AD=A115 553 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO=-ETC F/6 9/2 - I h
MODIFY: A IIACN!NE-INDEPENDENT MAINTENANCE PROGRAM, (U} S
DEC 81 N J MURPH'

UNCLASSIFIED AFI'I’/GCS/IIA/BID-S

; A

AL LA L

2IERE i

UM FILE COPY

'21-?—.,‘: TR 71 ENIG A Kt g A ST MY ot N T T A e MWW‘T";',E:‘{W*””..”??‘"”"“"'*"T‘“‘ e .

it T PR 2
T T e TR g
"‘:A,?' v 1

UNITED STATES AIR FORCE

AIR UNIVERSITY agNve
AIR FORCE INSTITUTE OF TECHNOLOGY - /*
‘Wright-Patterson Air Force Base,Ohio X

S e VA e

b ORI O e Goobe. e 5 o s ot

AFIT/GCS/MA/81D=-5

MODIFY: A MACHINE-INDEPENDENT

MAINTENANCE PROGRAM
THESIS

AFIT/GCS/MA/81D=5 Naney J. Murphy
Captain USAF

Approved for Public Release; Distribution Unlimited

DISTRISUTION STATEMENT A

Appraved for pubile release;
Distribution Unlimited

AFIT/GCS/MA/81D-5

MODIFY: A MACHINE-INDEPENDENT

MAINTENANCE PROGRAM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements of the Degree of

Master of Science

by

Nancy J«W Murphy, B.S.
Captain USAF
Graduate Computer Science

December 1981

Approved for Public Release; Distribution Unlimited

e b o iin

eface

This paper documents the procedures, considerations,
and design decisions made, leading to the implementation of
MODIFY, a machine-independent computer program designed to
assist programmers in maintaining source files. MODIFY is
written in standard FORTRAN 77.

My sincere thanks are extended to four people who
supported me during the pasc nine months. First, my sincere
thanks to Mr. Charles W. Richard, Jr., my faculty advisor,
for his timely guidance, persistence, and constructive
criticism. Second, my thanks to Mr. William K. McQuay, my
sponsor, for his support and guidance throughoué the
duration. Third, my thanks to Mrs. Linda L. Schafer, my
typist, for her dedication and attention-to-detail in typing
this report. And last, but definitely not least, my most
sincere appreciation and indebtedness goes to my husband,
Roger, for his patience, understanding, and support

throughout... I love you Roger, and now you are #1 again.

// Nancy J. Murphy

Accession For

NTIS aRigl g '

DT T 3 I

Uiininag = ned 1

Jurtificotion |

e e e

BY]
_Distributingy J

Avatlability Codaex |

R

Aail and/or \
Dist Zpuctal ;

AT

T e

—

I A TR e

P

R

Preface .

List Of Figures L] . . »

List of Tables .« ¢« o« ¢ o« o ¢ & o o o o o o o &

Abstract L] L] L) L) * . L] . L[] . L] L] L[] L[] L] L[] L] L[] L]
I. Introduction « ¢ « o« o« o ¢ ¢ « o o o o
Background . . + s o ¢ ¢ o o s s o
Problem and Solution . « ¢« ¢ « ¢ «
Scope L] L) L] L] L . [] . . L] . L] L] . L]
Approach and Presentation . . .« . .
II1. Detailed Analysis . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o &

UPDATE Characteristics . « ¢« ¢« o« « &
Literature Review . . ¢« ¢ « ¢ o « o
MODIFY Characteristics . . . « « + &

III. Develépment of the Program . « « « « + &

Machine-Dependent Requirements . . .
Processing Limitations « « « ¢« « .+ &
Program Description .+ « o+ « ¢ o o &

IV. Conclusions e & & & ¢ & & & 2 e & o & »

Results . & ¢ ¢ ¢ o o o o o o o a o
Recommendations « s+ e & a2 e o e a

Bibliography .« « o o « o o o o o + 2 o « o &

Appendix A:

Appendix

Appendix C:

Appendix

Appendix

Vita . .

B:

UPDATE's Capabilities and Files .
VAX/Cyber Record Length Assignment
MODIFY User's Guide . . ¢« « &+ « &
MODIFY Functional Charts . « . . &

Description of MODIFY's Subroutines

iit

ii

iv

vi

-—h

= Fww w -
[¥e] O &= += MOy W W N

(S,
O WO

o O U WM
W N NN -

105
113

119

AN/ o) e 1 ene

UPDATE File Interaction

MODIFY File Interaction

MODIFY Program Library Structure

Directory Record Contents

Deck/Comdeck Record Contents

MODIFY Funtional Structure

MODIFY User-Accessible File Interaction

MODIFY Program Overview(A-0)

MODIFY Functional Structure(A0)

Set Control Information(A1l)

Set Processing Information(A2)

Update Program Library(A3

Generate Source File(Ald)

)

21
27
28
42
T4
107
108
109

110

MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
UPDATE
UPDATE
UPDATE
UPDATE

UPDATE

Features . « ¢« « « &

Directives . . .+ . .
File Characteristics
Directory Contents .
Card Image Contents .
Job Control Parameters
List Options
Features+ . .
Directives
File Characteristics .
Job Control Parameters

List Options

Machine-Dependent Information« . .+ .

MODIFY

User-Accessible File Characteristics

L sivgpame R Ry g s o TV
4 e . LN R Tl U

s e st e £

AFIT/GCS/MA/81D-5

N

It is not uncommon for an organization to maintain a

Abstract

set of files on two or more different computer systems.
Each system has its own way of allowing the user to make
changes to the files, forcing users not only to know those
unique procedures but to make duplicate changes for each
systam. Making the same c¢hanges to the same filles on
different computer systems requires additional time and
increases the risk of making errors. This paper presents
the procedures, considerations, and design decisions made,
leading to the implementation of MODIFY, a machine-
\ independent batch utility designed to assist programmers in
maintaining source files. MODIFY, which 1is written in
standard FORTRAN 77, handles routine update/retrieval

functions and provides a complete audit trail of changes. 1

~

e e v o e T o A

T Ry g

MCDIFY: A MACHINE-INDEPENDENT MAINTENANCE PROGRAM

I. Jlntroduction

The purpose of this project is to design and implement
a machine-independent software package similar to the
Control Data Corporation (CDC) UPDATE program, a batch
utility capable of creating, updating, and retrieving
compressed sournce files in a program library. This chapter
will provide the reader an explanation of why such a package
is needed, the subset of CDC's UPDATE which has been
emulated, and the approach taken in accomplishing the design
and implementation of the machine-independent package along

with an overview of the remaining chapters of this paper.

Background
The emulation of CDC's UPDATE utility is needed by

personnel from the Analysis & Evaluation Branch, Electronic
Warfare Division, Avionies Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson Air Force Base,
Ohio (AFWAL/AAWA).

The AAWA personnel are required to maintain and execute
application programs on two different computer systems. The
primary computer used is a DEC VAX 11/780, but when this
computer is processing classified information, a CDC Cyber
74/750 computer system must be used. Each system has its

own way of allowing the user to make changes to source

files, forcing wusers not only to know those wunique

PRI Y

e

Ty,

procedures but to make duplicate changes for each system.
Making the same changes to the same files on two different
computers requires additional time and increases the risk of

making errors.

Eroblem and Solution

A machine-independent program is needed allowing the
user to make only one set of changes for source files stored
on both the DEC VAX 11/780 and the CDC Cyber TU/750 computer
systems, The Avionics Laboratory personnel are familiar
with and have used a subset of CDC's UPDATE utility in the
past. Therefore, a machine-independent program emulating a

subset of CDC's UPDATE utility is provided.

sScope

The machine-independent update utility developed,
called MODIFY, was designed in such a way to recognize
eleven UPDATE directives (i.e., eleven commands) and three
additional directives (commands) not available in UPDATE.
The eleven UPDATE directives supported are the most commonly
used and are:

®ADDFILE
®CALL
#COMDECK
®COMPILE
®DECK
®DELETE
$IDENT
®INSERT
$RESTORE
*SEQUENCE
®YANK

Once MODIFY was implemented on the target machine, DEC VAX
11/780, the AAWA personnel could use the same update deck
(using the UPDATE subset) on either computer system. When
(or 1f) MODIFY is implemented on the CDC Cyber TU4/750
system, the full complement of MODIFY directives will be
available on both systems, including the three directives
not on UPDATE:

®EDIT

*FILL

®SCAN

roach a Presentatio

An extensive study was conducted of CDC's UPDATE
Reference Manual to emulate a subset of its capabilities on
the target machine, the DEC VAX 11/780. Seven other utility
packages were reviewed in an effort to include the most
attractive capabilities (even more than what UPDATE offers)
and to gain insight into the file structures needed to
accomplish the tasks. Once all the directives and file
structure decisions were made, MODIFY was designed, coded,
tested, and implemented on the DEC VAX 11/780. MODIFY is
coded in American National Standards Institude (ANSI)
standard FORTRAN 77, promoting machine independence.

The remaining chapters of this report describe the
steps taken to design and implement MODIFY. Chapter 1II
outlines the characteristics and capabilities of already
existing utilities and then describes those capabilities
selected to be included in MODIFY. Chapter III describes

the decisions and assumptions made during the development of

e

the program and an overview of the program structure.

Chapter IV ties it all together describing the results of

this project and recommendations to enhance MODIFY.

II. Detailed Analvsis

A certain amount of research and several decisions
needed to be made before the actual design of the program
was started. Since this project evolved around an already
existing program, the process may seem to be trivial at
first thought. However, FORTRAN has traditionally been a
"computational" language and placed certain limits on this
"data-manipulating" project. FORTRAN was selected, however,
because of its popularity, i.e. most computer systems have a
FORTRAN compiler. Further, of the eight utilities studied,
the manuals available were programmer-guide-type manuals;
giving detailed descriptions on what the utility does and
what the user needs to do to use the package, but very
littie on how the utility actually handles the taéks.

Since MODIFY, in part, 1is a subset of CDC's UPDATE
utility, the first section of this chapter gives an overview
of UPDATE's features, type of runs, directives, file
structures, and control card parameters. The most useful
directives of UPDATE have already been identified and are
included in MODIFY; however, other utility packages have
popular features not available in UPDATE. The second
section of this chapter describes the unique capabilities
and functions of seven other utility packages. The last
section summarizes the characteristics of MODIFY, based on

the results of analyzing the eight utility reference

manuals.

ek

gy v e S)

gy L . 5 o M - g b s A ik o AR
o e W A Bk 552 i M . Ao : areuiadia .

UPDATE Characteristics

UPDATE is a utility package capable of updating and/or
retrieving sets of data stored in one file, called a program
library (PL). A program library c¢ontains "decks",
"comdecks", and "idents". A "deck" usually consists of a
source program, but may contain job control 1language,
subprograms, data, etc. A "comdeck", or common deck,
contains source code which may be inserted intoc decks or
other comdecks. An "ident" is a correction set which
identifies directives and source-code records used in
updating a deck or comdeck. The rest of this section
outlines UPDATE's capabilities and file structures, the
details of which may be found in Appendix A.

Features (Ref Uu4:1-2). UPDATE has fourteen features
which are explicitly listed in Table A-I. The features are
not discussed in detail since the descriptions are self-
explanatory. This information was used as an initial step
in deciding MODIFY's capabilities.

es of (Ref H4:1-3,1-4). When UPDATE is
executed, one of the three modes of operation is either
implied by the order of the directives or explicitly
selected on the UPDATE job control card. The type of runs
are: creation, correction, or copy.

The basic rule for distinguishing a creation run from a

correction run 1is: a c¢reation run is implied when UPDATE

does not encounter any directives prior to encountering a

o

- ————

Sramee e o g

#DECK or #*COMDECK directive. It is a "basic" rule because
there are ten directives which may precede a ¥#DECK or
*COMDECK. However, the ten directives are the "hardly-ever-
used" directives and would add little to this discussion.

A correction run usually begins with an ®IDENT
directive but several other directives are permissable. A
one-time-only creation run must establish the program
library before any correction or copy runs may be executed.

A sequential-to-random copy run may be requested by
including an "A" as a parameter on the UPDATE job control
card. A random-to-sequential copy run is requested by
including a "B" on the UPDATE job control card.

Directives (Ref U4:2-% thru 2-30). UPDATE recognizes
forty-one directives, but eleven of them can handle any
routine update or retrieval function a user may desire.
Many of the directives fall under the "hardly-ever-used"
category while others allow a "different-way-of-doing-it"
option. For example, to insert a new data-card record the
#*BEFORE directive or the #®INSERT directive can be wused.
Table A-II 1ists the UPDATE directives along with an
acceptable abbreviation and a brief description of each one.

File Structures (Ref 4:3-1 thru 3-15, C-1 thru D-2),
UPDATE optionally interacts with six user-accessible files

and six scratch files. Figure 1 depicts this relationship

and identifies the standard name of these files.

PO S

g s e o

(1)

OUTPUT

(0)

UPDTSCR

7/
/
/7
A
UPDATE
7 \
/ \ \\\
v \Y
NEWPL COMPILE
(N) (c)

f

UPDTCDK UPDTTPL‘2 UPDTEXT

UPDTAUD

INPUT OLDPL
P
/’ i |

~N
N
SOURCE
(s)

UPDTPMD

Figure 1. UPDATE File Interaction

R A TR e |

SANRINCRIN i SRR NING< . -l T) A i - . ot Ll o NS i A s

The dotted lines indicate optional files, depending on the
type of run. The alphabetic character in parenthesis indi-
cates the UPDATE control card parameter (explained in the
next section) whiech can be used to change the default name
of the user-accessible files. With the exception of a
creation run, OLDPL is the latest version of NEWPL generated
from a previous UPDATE run. The characteristics of these
twelve files are listed in Table A-III.

The program library contains compressed card images.
UPDATE compresses a card image by replacing three embedded
spaces with 0002, four embedded spaces with 0003,..., 67
embedded spaces with 007700028’ etec. Trailing spaces are
not considered as embedded and are not included in the card
image. This reduces the length of most records, thereby
decreasing the amount of space required to store the program
library.

The formats of the records generated by UPDATE for both
random and sequentiﬁl program libraries are available in the
UPDATE Reference Manual. The description of these records
is not repeated here since the formats were not utilized in
MODIFY. Much of the information involves bit accessibility,
a level FORTRAN 77 cannot handle, and control information
needed to support program libraries created by older
versions of UPDATE.

Coptrol Card Parameters (Ref 4:U4-2 thru 4-10). UPDATE
is invoked by 4including an "UPDATE,pi1,p2,...,pn." control

card in the Jjob control stream, where pl', p2,..., pn are

U

optional parameters used to sSpecify modes and files for the
run. Table A-IV lists the parameters and their functions.
The List (L) parameter allow3 the user to specify output

listing options to be invoked. Table A-V 1lists the

acceptable values and a brief description of what each value

will generate. The default value for a creation run is

A12, for a correction run is A1234.

Literature Review

Several UPDATE~-type utility packages are available.
Seven such packages were studied in detail in order to
acquire additional information. This section briefly
outlines the capabilities of the seven utilities, as they
differ from UPDATE.

EDIT (Ref 3) apparently is an early version of UPDATE,
but not nearly as diversified. The thirteen directives
available are a subset of UPDATE, all the files are sequen-
tial, and all the unit information referred to tape drives.

HISTORIAN (Ref 8) is a machine-independent, commer-
cially-available package supporting twenty-one directives in
which all but one make up a subset of UPDATE, The one
directive not supported by UPDATE is #SCAN, or #*SC, and
allows for string search and replacement. The functions
performed by the UPDATE control card parameters are handled
via a HISTORIAN card, the first card before any directives
in the input file. Decks or comdecks containing more than

4095 records must be separated so not to exceed the

4095-record limit. HISTORIAN also has a "salvage" run which

attempts to recover program libraries after a machine
malfunction,

LIBRARIAN (Ref 1) is an IBM-oriented package offering
three attractive directives not available in UPDATE,. The
"_EDIT" performs the string search and replacement function,
while "-SCAN" performs a string search and print function,
with no replacement. The "-FILL"™ allows a string of char-
acters to be inserted into specific columns, overlaying the
previous contents. A password may be included with each
deck to minimize the possibility of inadvertently selecting
and updating the wrong deck. A program library may contain
(only) up to twenty modules.

MAWLOGS (Ref 7) is a fairly primitive package with only
four directives: add text, delete text, add module, and
delete module. The directives must be in alphabetic order
by deck name. All files are sequential, and they contain
80-character card images. Any time a deck is altered it 1is
resequenced automatically, causing line numbers to change
from one update to the next. The packagé includes a
complete listing of the FORTRAN IV progranm.

MEDIT (Ref 6) is a limited machine-independent package
and is neither execution-timé nor storage efficient. A
"base module"™ is identified as a sequential file of card
images. A "test module" is the result of a run, but an

updated version is not saved. As additional changes of the

base module are required, the directives are added to the

sl a et o ah s e

L N R s o, g) i b ot SN

R . AL~ e 1% W Gt

update card deck and all previous changes are accomplished

AV e e e W L =

over (and over) for each succeeding run, until all necessary
changes are realized. Once the module is ready for pro-

duction, an updated version is saved but the history of ﬁ
changes 1is 1lost, because the module is automatically
resequenced. The package only supports five functions: an
insert, a deletion, placement of a "C" in column 1,
placement of a space in column 1, and replacement of a
string. The package is primitive, but the manual does
include a complete listing of the FORTRAN IV progranm.

PANVALET (Ref 9) is an IBM-oriented package with many

functions not included in UPDATE. However, all but one of i
)1 these unique functions pertain sclely to IBM nomenclature. {
| The one unique directive which is not machine dependent is
the "EJECT" command which causes the output print file to
advance to the top of the next form. 4

SAIL (Ref 5) is a machine-independent package which has

similar capabilities as UPDATE but accomplishes its tasks in

an altogether different manner. To outline SAIL's unique

functions would be beyond the scope of this report.

MODIFX Characteristics

This section describes the capabilities and file struc-
tures of the new utility, MODIFY, the result of studying
UPDATE and the seven other packages previously mentioned.

MODIFY is a machine-independent update utility modeled

\' after CDC's UPDATE utility. Like UPDATE, a program library

12

R A e

AP e - Nl § 1 At s . .
EDPPRERFAERES i Thii.) o Ry mad L T g peae s Tl Uit ootk gl i ok SR M R0 Lot auiiibiy citiliiielitives

——

is maintained which contains decks, comdecks, and idents.
The user supplies a MODIFY control card and a set of MODIFY
directives and/or data-card records to a MODIFY run. The
supplied information is used by MODIFY to create, update,
and/or retrieve the specified decks.

Features. The features of MODIFY are listed in Table I
along with a brief explanation of how the user requests the
features. The differences of MODIFY features as compared to
UPDATE features are described in the next paragraph.

MODIFY does not support sequential program libraries;
therefore, MODIFY cannot copy libraries from sequential to
random format and vice versa, as does UPDATE. Sequential
libraries would not be execution nor storage efficient and
UPDATE probably has the feature to support environments
where magnetic tapes are prominent, rather than disk packs,
and to support previous versions of UPDATE. MODIFY does not
have the merging of two program libraries because of the way
MODIFY processes cbrrection sets, i.e., ident entries cannot
be moved once they are entered into the program 1library
directory. MODIFY recognizes abbreviated forms of
directives but does not include the capability of turning
off the search for the abbreviated formé. This feature was
not included since MODIFY contains so few directives;
however, if the user wishes to speed up processing (the
reason UPDATE has this capability) the user simply needs to

use the full directive name. The checksumming of a

13

R SRR Sl LR el il O

1

Table I

MODIFY Features

Feature

Explanation

Creation of a PL from
source decks

Updating of source decks
by inserting, deleting,
and restoring cards ac-
cording to sequence in
the deck or according to
correction set

Ability to completely and
permanently remove
correction sets from the
program library

Generation of a compile
file containing corrected
output acceptable as input
to other processing
programs

Processing of directives,
new text, and new source
decks from a file other
than the job input file

Production of fresh source
decks from the PL

Generation of a new,
updated PL

Comprehensive list output
noting any changes
occurring during the run
and status of PL

Ability to change the
directive card master
control character

No OLDPL identified and
first directive is either
#DECK or ¥#COMDECK

Insert via #INSERT, delete
via *DELETE, restore via
®RESTORE

A ®*DELETE followed by

a ®SEQUENCE, or generate a
SOURCE file to be input

to a MODIFY creation run

Any deck updated or
specified on ®COMPILE will
be written to the COMPILE
file

An "I=filename" specified
on the MODIFY card or an
alternate file name
specified on the ®ADDFILE

Include "S" on the MODIFY
card

Include "N" on the MODIFY
card

See Table VII for all the
list options

Include "%*=value" on the
MODIFY card, where "value"
is the new control
character

E Table I, Con't

MODIFY Features

Feature Explanation
- Recognition of abbreviated MODIFY will automatically
forms of directives accept the abbreviation

form or the long form

- Ability to use full Machine-dependent but ANSI
64-character set, including standard is A to Z, O to 9,
the colon and the thirteen special

characters =+-%/(),.$': and
blank

program library deals with sequential program libraries and
is not included in MODIFY.

Tvpes of Runs. MODIFY supports only the creation and
correction pruns, not the ;Opy run. A creation run is
implied if the first directive is either a #®DECK or a
#COMDECK. A correction run is implied if the first
directive is either an #IDENT, ®ADDFILE, 'COMPILE,.or #SCAN
directive. An #IDENT directive must be encountered before

any of the eight update-type directives are encountered.)

Thé UPDATE copy run is not supported because MODIFY is not
capable of maintaining a sequential program library.
Directives. MODIFY recognizes fourteen directives
capable of handling routine update or retrieval functions.
Table II 1lists the MODIFY directives along with an accept-
able abbreviation and a brief description of each one. The
asterisk preceding each name is the default directive card

master control character and identifies an input file record

15

= m e g v

e

Table II

MODIFY Directives

Name Abbreviation Function

$ADDFILE #AF Add a deck or comdeck to the PL

*CALL *CA Replaces this directive with the
contents of the comdeck identified
when the deck/comdeck is written
to COMPILE

$COMDECK %CD Introduces a common deck, common
code to be inserted into a deck or
another comdeck when CALLed

#COMPILE *C Specifies decks to be written to
file COMPILE for later compilation

#*DECK #DK Introduces a source deck, usually
contains a source program

®DELETE D Specified cards are flagged as
inactive and optionally replaced
with cards following the DELETE

BEDIT ®ED String search and replacement

RFILL SF1 Insert string of characters into
specified columns

®IDENT *ID Introduces a correction set

®INSERT LA Adds the cards following the
INSERT after the specified
location

#RESTORE #R Reactivates specified cards and
optionally inserts the cards
following the RESTORE

#SCAN #sC String search and print

$SEQUENCE #3 Resequences active cards and
purges inactive cards in specified
deck/comdeck

BYANK *y Deactivates all cards of specified

correction set, restores
decks/comdecks to previous state

16

as a directive rather than a data card. The #®*EDIT, ®FILL,

and #SCAN directives are not supported by UPDATE, but are

directives taken from LIBRARIAN (Ref 1).

e Struct . MODIFY optionally interacts with six
user-accessible files and five scratch files., Figure 2
depicts this relationship, the dotted lines indicating
optional files, depending on the type of run. The diagranm
does not show default file names for the user-accessible
files because these names have not been permanently assigned
in the MODIF& program. The names are to be supplied prior
to implementing MODIFY, allowing the file names to take on
the format :sed for any given system. For example, the
default file name for the card reader on the DEC VAX 11/780

: is SYS$INPUT, on the CDC Cyber 74/750 is INPUT, and on an
IBM 360 is SYSIN. However, to avoid any confusion which may
occur when discussing the files and their names, the UPDATE
default file names (INPUT,‘OUTPUT, OLDPL, NEWPL, COMPILE,

and SOURCE) will be used throughout this report. The

alphabetic character in parenthesis indicates the MODIFY
control card parameter (defined in the next section) used to
change the default file name of the user-accessible files.
With the exception of a creation run, OLDPL 1is t(he
latest version of NEWPL generated from a previous MODIFY
run. The characteristics of the MODIFY files are listed in -
Table 1III. All but ¢two of the files are defined as i

formatted, sequential files and no more explanation seems

17

RN .. T

e

| >

3 Input 01ld Pl
: !
(1) (P) |
yd :

7
/
V4
MODIFY

/\\\

N
- \Y ~
Y
New Pi Compile Source
h (N) (c) (s)

. . Alt Alt Scratch
Input Output Input

Figure 2. MODIFY File Interaction

(@]
~ =4
[@] <t
~ O
o
ct
‘ ~

Scratch

Comdeck

Table III

MODIFY File Characteristics
Record
File Type Storage Length Function
0l1d PL Unformatted Direct, User- Containes old PL
Compressed Supplied
New PL Unformatted Direct, User- Contains new PL
Compressed Supplied
Input Formatted Sequential 80 Contains MODIFY
card and can con-
tain directives
and data cards
Output Formatted Sequential 132 Contains listings
requested via the
"L" control card
parameter
Compile Formatted Sequential 80 Contains execut-
able program
statements suit-
able for
compilation
Source Formatted Sequential 80 Contains "active"
card images
Alternate Formatted Sequential 80 Used as the
Input alternate input
file if specified
Alternate Formatted Sequential 132 Used as the
Qutput alternate output
file if specified
Scratch Formatted Sequential 80 Contains update-
Input type directives
encountered on
the input file
and data cards .
following i
Seratch Formatted Sequential 132 Contains results {3
Qutput of requesting 1

list options 7 L
and 8

e Y

Table III, Con't

MODIFY File Characteristics

Record
File Type Storage Length Function
Scratch Formatted Sequential 80 Used to hold
Comdeck common decks for
later expansion
of #CALL cards
necessary. However, several decisions needed to be made

before deciding the exact composition of the program
library. An extensive discussion of the characteristics
considered follows.

The program library file could be sequential- or
direct-access (ANSI standard), formatted or unformatted, and
contain compressed (suppress preceding spaces, drop
succeeding spaces) or uncompressed data cards (store 80-byte
cards). In order to minimize execution time and storage
requirements, the decision to have a direct-access file
organization with compressed cards was made early-on.

The contents of the program library file consists of
fixed~length records, as required for direct-access files,
in which one of the records is used as the directory (REC
#1) and at 1least one record is generated for each
deck/comdeck introduced (REC #2, REC #3, etec). If the
input-data cards making up one deck/comdeck are more than
will fit in one program library record, MODIFY will auto-

matically start a continuation record (or records) until all

20

e o e e -

- gagroie -yl VUL

the input-data cards have been processed. In other words,
the contents of a deck/comdeck may span over multiple
records as depicted in Figure 3. As the diagram shows, the
directory is always REC #1 and any decks introduced may be

stored in multiple records.

REC #1

Directory } Directory Record
REC #2 b

DECK1
REC #3

DECK1,Con't

REC #4

DECK1,Con't Deck/Comdeck
W)
W

Records

REC #n-2

DECK10

REC #n-1

DECK11

REC #n

DECK11,Con't

Figure 3. MODIFY Program Library Structure

21

PR)

P

The

directory record is made up of a fixed-length

portion followed by a variable~length portion, the contents
of which is outlined in Table 1IV. The first two elements
are included only once, whereas at least one set of the last
four elements 1is needed for each deck/comdeck/ident

introduced to the PL. The set of four elements makes up

what 1is called a "directory entry",. As previously

explained, multiple entries may be generated when the
contents of a deck/comdeck will not fit in one \
deck/comdgck-type record. MODIFY will automaticaliy
generate a\directory entry for each continuation record. An
ident (identifying a correction set) may also cause multiple
directory entries to be generated. The input-data cards
introduced by an ident are not placed in a separate record
\ but are inserted into the deck/comdeck recofd(s) specified.
The ident directory entry 1is used to keep track of the
decks/comdecks updated; that is, the "REC number" element
contains the number of the first record of the deck/comdeck

updated. The linked~-list structure (the fourth element of

each directory entry) is used to chain the entries together
to keep .track of all records updated by the ident. A more
detailed description of the directory record format 1is
presented later in this section.

Each deck/comdeck record in the file contains a
variable number of variable-length "card images". Each card

image consists of a variable-length portion holding control

e A T mee e e L me e, ol WA e R i -~ s e ekl e AR

Table IV

MODIFY Directory Contents

Information Needed Type
- Number of the next REC available Integer
- Next available directory word Integer
- #Deck/$Comdeck/+Ident name Character
- REC number Integer
- Number of data cards in the deck/ Integer
comdeck/ident
- Directory entry of rest of deck/ Integer

comdeck or that deck/comdeck which
ident updates

information and a variable-length portion holding a
compressed version of the data record's text. The
variable-length control information portion consists of all
but the last element identified in Table V; the last element
makes up the variable-length text portion. The length of
the control information portion will vary depending on the
number of times the card image changes status (active to
inactive, inactive to active). Any time the status changes,
one set of correction set information (CSI) elements (CSIn#1
and CSIn#Z) will be generated, where "n" is 1, 2, 3, ...,
for the first, second, third, ..., change made. A more
detailed description of the deck/comdeck record format is

presented later in this section,

23

Table V

MODIFY Card Image Contents

Information Needed Type
- Status (t=zactive, Ozinactive) Integer
- Sequence number within the deck/ Integer
comdeck/ident introducing the
card
- Number of correction set information Integer

(CSI) sets to follow

- CSIn#1 Action of correction set Integer
(1zactivated card,
O=deactivated card)

- CSIn#Z Index to array identifying Integer
the ident that introduced/
changed the card

= Number of spaces preceding the text Integer
- Number of characters in the text Integer
- Text Character

The next file structure characteristic requiring con-
sideration for the program library file was selecting
coded-~-type or binary-type records or, in FORTRAN 77 termi-
nology, formatted I/0 or unformatted I1/0. Unformatted I/0
is execution-time efficient (and, usually, storage
efficient) since a memory-to-storage, storage-to memory
conversion is not necessary (Ref 10:342). A formatted 1/0
file would, on the other hand, allow for easy transport from
one machine to another., However, the sequential, formatted
SOURCE file should be used for this purpose.

The efficiency realized with unformatted I/0 is indeed
14

24

QU 52 n

AR g3 40 O Cmee e e e % P

’

attractive; however, because of the variable-length card
images in a record, the use of unformatted READ and WRITE
statements, with predefined variable names, could not be

used. The possibility of reading a record into an array was

ir evaluated next; however, all data elements stored in an
array are required to be of the same type (i.e., defined as
CHARACTER, INTEGER, or REAL). This requirement presented a
problem, as can be seen in reviewing Table IV and Table V,
since the contents of the library records are made up of a
mixture of CHARACTER-type and INTEGER-type data elements.
FORTRAN does not allow the assignment of one data-type
(e.g., CHARACTER) to a different data-type (e.g., INTEGER)
within a program unit. However, since FORTRAN does not make
the "consistency” check of items passed to a subroutine, the
problem was ;liminated. That is, a CHARACTER-type element
can be passed to a subroutine and the corresponding dummy 1

argument defined in the subroutine can be of type INTEGER.

Within the subroutine, the INTEGER-defined element is moved

to a second INTEGER-defined element, which is also defined
as a dummy argument and used to pass the element back to the
calling progranm. The calling program's second actual
argument would be defined as INTEGER, thereby having an
INTEGER-defined version of the CHARACTER-defined data

element.

The final decision was made, then, to have unformatted
I/0 records which would be generated/retrieved via an

INTEGER-type array. That is, a program library record 1is

[,

JOGACHRY gy~ AR gy~ WL <, AR A > bRy . s

written from, and read into, an integer array defined in
main memory. Each integer element defined in Table IV and
Table V occupies one word of memory and the character
elements occupy a variable number of words in memory,
depending on the number of characters in the element and the
number of bytes in a word (machine dependent).

Figure 4 graphically displays the contents of REC #1,
the program library directory, as it appears in the integer
array. Each box represents one word in memory. Three words
are reserved for the character-~defined deck/comdeck/ident
name, This element could have been made variable, but an
additional word would have been necessary to keep track of
the number of characters in the name. The number of words
needed depends on the length of the character string and the
nunber of bytes in a word. The maximum length allowed for a
deck/comdeck/ident name is nine characters and with the #* to
designate a deck, or $ to designate a comdeck, or + to
designate an ident, the element could be up to ten
characters in length. The number of bytes per word on the
DEC VAX 11/780 is four and the number of bytes per word on
the CDC Cyber T7TU4/750 is ten. Therefore, if the name was ten
characters, three words would be needed on the VAX and only
one word on the Cyber. To allow for the worst case and make
it easier to "skip" through the array, three words are
reserved for the deck/comdeck/ident name.

Figure 5 graphically displays the contents of each

remaining record in the program library file, as they would

26

—-—

First
Directory
Entry

a2

. § 7 Second

4 Directory
b2 Entry
2

17

L. T Nth
Directory
Entry

Figure 4,

The fixed-length portion is
represented by x and vy,

where x

y

and d,

where a

T T R Ve e

is

is

The variable-~length portion is
made up of a variable number of
directory entries in which one
entry is represented by a, b, ¢,

is

is

is

is

Directory Record Contents

the number of the
next available REC

the next available
directory word

the ®DECK/$COMDECK/
+Ident name

the (first) REC number
where the ccntents of
the deck/comdeck/ident
in "a" i{s stored

the sequence number of
the last input-data
card introduced in
the deck/comdeck/ident
in nan

an index to the
directory entry which
contains continuation
information for the
deck/comdeck/ident

in nan

the total number of
directory entries
generated.

¢ g e Wty e iy e RS g S - e v "l sl v o - - o
P 17 g CACHIE RMIPEREEE WA L, VS 0. 473 Ey u : RED e s s bt iy SRR g . ey

3 |
{ a, /P One card image contains a variable-length
' ‘ control information portion represented by
‘ b1 First a,b,c,d,e,and £, and a variable-length
Card text portion represented by g,
3 c1 Image
where a is the status (1=zactive,
d, Ozinactive) of the card image
p
Eﬁ:::: b is the sequence number within the
deck/comdeck/ident
e, introduc¢ing the card
f1 ¢ is the number of correction set
information (CSI) sets in "d"
! g
- 14 d is the area of the "c" CSI sets; a
A ———— set consists of two words
>ZL where the first word repre-
' a, \ sents the action of the
correction set (i1zactivated
b2 card, O=deactivated card)
Second and the second word contains
c, Card an array index identifying the
1 Image ident causing the change.
€2
f2 e is the number of spaces preceding
the text portion :
g :
- 2 _ f is the number of characters in the i
text portion
=3 <
%KE g is the text portion
a
o n is the number of card images in
b one record
21 Nth
e, Card
Image
d
n
mnd —
1
e
n
f
n
LY
- -
—]
W

Figure 5. Deck/Comdeck Record Contents

28

PO Ta o &

appear in an integer array. A variable-length "card image"
is generated for each card in a deck/comdeck. Again, each
box represents one word of memory.

As card images are generated, the number of words
needed depends on the way the card image is introduced, the
number of characters in the text portion, and the number of
bytes in a word. A card image introduced with a #*DECK or
#COMDECK directive does not need any correction set informa-
tion (CSI) sets, represented by "d" in Figure 5; therefore,
the card image would occupy five words for control informa-
tion and a variable number of words for the text portion
(represented by "second card image" in Figure 5). On the
other hand, a card image introduced by an ®IDENT directive
(record inserted) would need a CSI set (two words) to iden-
tify the ident introducing the card image, thereby occupying
seven words for control information and a variable number of
words for the text portion. Each time a card image changes
status, another set of CSI words is needed, up to a maximum
of 20 CSI sets (only 20 changes allowed). In the worst
case, the control information section of the card image
would occupy forty-five words (twenty CSI's occupying forty
words plus the other five words of control information).

The number of words needed to store the character text
portion of each card image is dependent on the number of
characters in the text and the number of bytes in a word
(same as the deck/comdeck/ident name in the directory

record). In this case, since the number of characters range

29

[

from 0 to 80 characters, one word is reserved to keep track
of the number of characters in the text portion, rather than
reserve a fixed number of words. The least number of words
occupied by a card image would be realized if a blank card
was introduced via a #DECK or ®COMDECK. The card image
would occupy only five words, for the minimum number of
control information elements. In the worst case where the
card image changed status twenty times (the maximum allowed)
and the text portion contained 80 characters, the card image
would occupy sixty-five words on the VAX and fifty-three
words on the Cyber,. The following calculations show how

these totals were derived.

VAX Cyber
({4 bytes per word) (10 bytes per word)
5 Fixed, Control Information 5
4o 20 CSI's, 2 words each 40
20 Text portion (80 bytes) 8
65 Total Words Occupied 53

The remaining file structure characteristic regquiring
consideration was the length of each record in the program
library file. It is not known if MODIFY will be used (by
users other than AFWAL/AAWA) to maintain many little decks
and/or comdecks requiring many directory entries but a small
number of card images, or a few large decks/comdecks
requiring few directory entries but a large number of card
images. MODIFY has been designed to be as flexible as

possible to the user's needs, and the record length decision

T om——

- it~ Rl it RN RS Soie-p i U RIS N s S i ‘

must be made prior to implementing MODIFY on any given

computer system. A more detailed discussion of this issue

T = e

is presented in Chapter III.
control Card Parameters. MODIFY supports eleven of the
] twenty-six UPDATE parameters, but the parameters are not

specified on the job control statement wused ¢to invoke

MODIFY. The parameters are, instead, listed on a "MODIFY

Card" (MODIFY,pt1,p2,...,pn}), which must bé the first card in

the input file, This must be the system's designated input
| file (the card reader) and not an aternate input file. The
eleven parameters supported by MODIFY are listed in Table VI
and are all optional. However, a MODIFY card must always be
i submitted even though there are no parameters specified.

The "mode" parameters, F and Q, specify the order that
decks are to appear on COMPILE. The Full (F) mode ignores
#COMPILE directives and updates all decks in the sequence
encountered on the 1library. The Quick (Q) mode allows
#COMPILE directives to specify decks written to COMPILE in

the order encountered on the library, unless "K" is also

specified then decks are in the order specified on #*COMPILE
directives. If neither Full nor Quick is specified, a
Normal mode is implied. The Normal mode writes to COMPILE =
all decks specified on #COMPILE directives plus decks

updated, in the order encountered on the library. If "K" is

specified, decks are in the order specified on #COMPILE

directives followed by any others updated.

The List (L) parameter allows the user to specify out-

Table VI

MODIFY Job Control Parameters

Significance

Compile file output
Full update mode
Input file

Decks written to COMPILE 4in order
specified by #COMPILE directives

Qutput listing options

New program library output file
Output listing file

0l1d program library file

Quick update mode

Source output file

Directive card master control
character

put 1listing options to be invoked. Table VII 1lists the
acceptable values and a brief description of what each value

will generate. The default value for a creation run is A12,

for a .correction run is A1234, All but two of UPDATE's

options are suppobted and one option is included that is not
provided by UPDATE. The UPDATE options 5 and 6 are not
supported, but the numbers have been reserved so that they
could easily be included in a later version of MODIFY. A
new Option B for alphabetized lists was included -to allow

the user to easily locate a gspecified deck/comdeck/ident

o o K3
L e TV DREE T
JR-Agt > >

PO - & L e - e - n e e

Table VII

MODIFY List Options

Option Significance

A Lists known decks/comdecks/ident names and
deck names written to COMPILE file

F All selections other than 0

0 Suppresses all MODIFY listings

1 Lists cards in error and the associated
error messages

2 Lists all active MODIFY directives
encountered either on input or on the old
program library

3 Lists all cards that changed status during
MODIFY run

y Lists all non-MODIFY directives encountered
in the input strean

7 Lists all active cards

8 Lists all inactive cards

9 Correction history of all cards listed as a
result of list options 7 and 8

B Three alphabetic lists by deck, comdeck,
and ident names

name. As the 1list of names grows, it sometimes is hard

to locate specific names.

The descriptions of the remaining MODIFY control card

parameters listed in Table VI are self-explanatory and are

not discussed further here. A detailed description of the

MODIFY Control
directives, can

Appendix C.

Card Parameters, along with the MODIFY

be found in the MODIFY User's Guide,

33

R

ey —— Y SR

e

III. Development of the Progranm

Writing a machine-independent software package cannot
be accomplished without requiring some machine-dependent
information. The first section of this chapter defines the
information which must be supplied before MODIFY 1is
implemented. The second section outlines in detail how
directory entries are generated which, in turn, can decrease
the expected number of deck/comdeck/ident names allowed.

The last section gives an overview of how the program works.

Machine-Dependent Requirements

This section defines the information which must be
supplied prior to implementing MODIFY. The information
required consists of the values needed for three constants,
an integer array, and a character array.

Default File Names. The FORTRAN 77 OPEN statement
contains an optional parameter, FILE, which gives the name
of the file being connected to the unit. This parameter is
used in the MODIFY OPEN statements; therefore, default names
for the six user-accessible files must be assigned. The
values assigned are placed in a character array.

The assignment of these file names could have been
fixed; however, the assignment has been 1left until
compilation so that file names corresponding to each
particular system could be used. The decision to use the

FILE parameter will also allow the user unfamiliar with

34

e Lmmns

— A A nw &

FORTRAN default names to use MODIFY without having to learn
those names (e.g., the VAX default is FOROxx, and the Cyber
default is TAPExx, where "xx" is the unit number). It is
recommended that the system-default names be used for the
input and output files (i.e., VAX input is SYS$INPUT and
output is SYS$OUTPUT; Cyber input is INPUT and output is
OUTPUT). It is also recommended that standard names be
selected for the remaining user-accessible files to avoid
any confusion when working with different computer systems.
That is, using the names OLDPL, COMPILE, NEWPL and SOURCE as
default file names for the remaining user-accessible files
should eliminate any ambiguity about the contents and/or
purpose of the files. The use of these file names would
also correspond to the names used throughout this report, as
well as the MODIFY User's Guide, and would also help in
eliminating any ambiguity.

The 1last entry of the character array defines the
default value of the directive card master control
character. It is recommended that the asterisk be assigned
to correspond with the user's manual. However, the
programming language used by the majority of MODIFY users
may dictate that a character other than an asterisk be used.
For example, standard FORTRAN 77 permits the use of an
asterisk in column 1 to denote a comment, If the asterisk
is used extensively to denote a comment, it may be desirable
to use a different master control character. An asterisk as

the default value would force users to change the default

35

o
S
¢ 3
[
Ed
A
]

gy e R e N Y

value every time MODIFY is run.

File Name Length. The maximum length of the file names

must be provided. At compilation time the default names are
provided, but the user of MODIFY still has the option of

changing the default names (via the MODIFY control card

parameters). A check 1is made to insure that the name
submitted on the MODIFY card does not exceed the system's
filename 1limit (e.g., VAX = 9 characters, Cyber = 7

characters).

Unit Numbers. FORTRAN requires that all READ and WRITE
b« statements identify a unit number (1-99) corresponding to
the appropriate file. Some computer systems assign a unit
¥ number to a specified device (e.g., the VAX assigns unit 5
to the card reader and unit 6 to the printer). The eleven
files used by MODIFY, therefore, must be assigned a unit
number. The values are placed in an integer array and used
accordingly. It is recommended that system default unit
numbers be used when appropriate (e.g., on the VaX),

otherwise any eleven numbers from 1 to 99 may be selected.

Mord Length. The number of bytes in a word makes a
significant difference in determining the size of the
program 1library file. This information varies from one
computer system to another and must be provided. The
difference between the VAX and Cyber illustrates this
varlability. The VAX is a 32-bit machine, with 8-bit bytes, ;
and 4-byte words. The Cyber is a 60-bit machine, with 6-bit

bytes, and 10-byte words. The reason for needing this ;

36

AT A g e i o) PRIl gy 4 o SRR AN e i SN

information has already be explained in Chapter II's "MODIFY
Characteristics™ section,

Record Lepgth. The remaining constant required deals
with the length of each record in the program library file.
FORTRAN requires that this assignment be made for
direct-access files, and ¢the wunit of assignment 1is
machine-dependent.

The record 1length value selected has a tremendous
impact on storage efficiency and places some limits as to
the capabilities of MODIFY. Because of the importance of
selecting an appropriate value, a separate section has been

written to discuss the impact of this assignment.

Processing Limitations

This section outlines the importance of selecting an
appropriate value for the record length parameter, RECL,
which appears in the OLDPL and NEWPL OPEN statements.
Since both the VAX and Cyber requires the unit of assignment
to be in "words", this discussion will focus on determining
the number of words in each record.

The c¢onntents of the directory record consists of two
one-word elements and a variable number of six-word elements
(a directory entry). Recall that at least one directory
entry 1is generated for each deck/comdeck/ident introduced
(see Figure 4), Therefore, a record length of 602 words
would allow for 100 deck/comdeck/ident names. On the other

hand, the record length of 602 words would, on the average,

37

allow for 40 card images on the VAX (66 on the Cyber) in a

deck/comdeck record. These averages are representative of
introducing a new deck/comdeck (no CSIs generated) and the
average length of the text portion is 40 characters. The

following calculations show how the averages were derived.

vaAX Cyber
(4-byte words) (10-byte words)
5 Control Information 5

(no CSI words)

10 Text portion (40 bytes) 4

15 Words per card image 9
Divide the values into 602 words

40 Card images per record 66

The example shows that a record would hold only a
minimal number of card images (card-input records) and does
not account for the need of additional words when updates
are requested, Additional words are needed each time a card
image is changed (a 2-word CSI is generated) and anytime a
new card-input record is introduced (a2 new card image 1is
generated). On the other hand, if a large number of small
comdecks (say 2-to-3 lines of code) are introduced, the 40
(or 66) card images would be more than enough, and space
would be wasted.

In an effort to eliminate wasted space but allow a
deck/comdeck to grow, MODIFY will automatically place card
images in continuation records and update the directory

accordingly. This 1is all transparent to the user, but does

~

38

require an additional entry "in the directory for each

continuation generated, decreasing the number of decks

allowed in the program library.

Multiple directory entries may also be needed for any

An ident name is used to change

one ident name introduced.

and/or add card images to already existing decks/comdecks.

If the directives in one run requests changes to card images

five difTerent decks, then five directory entries

in, say,

will be generated. Each entry will identify the program

If a change to any of the ident

library record updated.

card images 1is then requested, MODIFY needs only search

those five records to find the card image, and not all the

records in the library.

Because of the continuation of decks/comdecks and

multiple entries needed for idents, the directory must be

larger than just allowing for a reasonable number of

decks/comdecks/idents. Once the directory is full, MODIFY

There is a

will no longer process any update-type requests.

way, however, to allow changes to continue. At the end of

each run MODIFY will automatically print the number of

entries left in the directory. There is no provision to

when the entries are all used,

"clean up" the directory so,

The SOURCE

it is suggested that a SOURCE filie be generated.

file can then be designated as the input file to a MODIFY

creation run. This will eliminate all the historical

information, but will allow additional changes to be made.

It is recommended that the record length assignment be

s 2

e

made based on the average size of decks/comdecks (to save
space) but also allow the directory to have room for twice
as many decks/comdecks/idents expected. See Appendix B for
a discussion of the record length selected for the DEC VAX

117780 and CDC Cyber TH4#/750 computer systems.

Brogram Description

The MODIFY program is used to maintain and retrieve
source files located in a program library. This concept
allows the user to store multiple source files under one
file name thereby using less computer resources (e.g., one
entry in the file name table). MODIFY also allows the user
to define "common code"™ which requires only one change to
the common deck rather than a change for every place the
code is used. The main advantage of MODIFY is, however, the
capability of tracking all previous changes made to the
source code. By revoking the effects of an ident (via
#YANK), the source code changed is returned to its previous
state. All operations of the MODIFY program occur in
response to the user-supplied MODIFY Card and the input
transaction file containing MODIFY directive cards and/or
data cards.

The MODIFY Card must be the first card on the input
transaction file and may optionally 4include up to eleven
parameters (see Table VI). The MODIFY parameters allow the
user to specify which files are to be generated, the run

mode, and the order in which the decks are to be processed.

4o

D T

PRl Sy A il st e o e RS e, SRNIIION .. o 00 - <~ b i am oty

The fourteen directives (see Table II) allow the user to

specify the exact line(s) of code to be updated and/or the

decks to be retrieved for compilation. A more detailed
description of the parameters and directives can be found in
the MODIFY User's Guide, Appendix C.
Program Structure. The basic functional structure of
the MODIFY program is indicated in Figure 6. Appendix D
provides a more detailed set of Structured Analysis and
Design Technique (SADT) charts which depict ¢the primary
configuration of the program. MODIFY consists of the main
program and 54 subroutines, A brief description of each
subroutine is provided in Appendix E. The main program
basically contains six CALL statements which causes each of
the four primary functions to be executed (SADT charts do
(not depict housekeeping functions).
‘'The "Set Control Information"™ routine processes the
MODIFY Card. The card 1s validated and then used to set
appropriate values in three arrays. A character array

contains ¢the file names and the directive card master

control character. One logical array is used to indicate
which files are to be generated, the run mode (full, quick,
or normal), and the run type (creation or correction).
Another logical array is used to indicate which list options
are to be generated. The information contained in these
arrays it used continually by the update routines.

The "Set Processing Information"™ routine processes the

input transaction file. Each directive is validated and

LR

il b, 2

B L TR TP e e

aJunjonJijs teuoyjound XJIGOW °9 2JndtJ

h
3114
114 A04N0S J
304N0S ALVHANID
Nd
37Id I Nn
1dM3N /
a1Ld RYVHEIT —_ SAWVNQ TdMEN N\
F'TIdW0D WY4D0ud SIAIL0AUIA dLvddn /.
w SIVIS/SONILSIN ALvadn d11d NJJaW00 zomj
—r— d11d SNVEL 40S 314
u 14410
01| N4 9
IH Nn F3
r NOIIVHHOANT
SIWVNd D4S DNISSIO0Ud AT1d
SAWVNd 3711dW0D 1as NOILOVSNVHL
\ suoydd — T INdNI
NO
1
01) SNOILJO ISI1 NOILVWMOJINI aquvo
(IW) O4NI HdOW TOMINOD | TOHINOD
3114 (Nd) SaWvN a11d 13s XJTAOW

104100 STTE] _ /

(ND) SIHYN HIDN31
SLINN J1Id JWVN
1'invddada 3714

“

selected information is retrieved and placed in the

appropriate arrays. Those directives which can have data
cards following (the #DECK, #COMDECK, #DELETE, ¥*INSERT, and
®RESTORE) are placed in the scratch input file or the
scratch comdeck file, along with the data cards. The
information generated by ¢this routine is also wused
continually by the update routines.

The "Update Program Library" routine controls the bulk
of the work. The control information depicting the user's
desires is all available and the actual updating/retrieving
begins. The creation run requires little processing since
no updating takes place. Each record on the scratch comdeck
file and the scratch input file is used to generate a card
image for the NEWPL file and the text portion is written to
the OUPUT file. The text portion of non-directive card
images 1is written to file COMPILE, replacing #CALL
directives with the contents of the specified comdeck.

The correction run tests the overall program strategy;
that is, to locate a particular line of code as efficiently
as possible, make the specified change, and provide the user
with an updated copy suitable for compilation, The o1l4
program 1library directory is brought into memory, and
selected data 1s merged along with the new deck/comdeck/
ident data (generated from the input transaction file by the
"Set Processing Information" routine) into another array.

The deck/comdeck/ident names in the merged-data array are in

the order of (1) previous ident names, (2) new ident names,

Pt ayiiay-tiee Vi - ot J A . e— e M

P e i s v K e e s e
——

and (3) the deck and comdeck names. New deck/comdeck names
are placed after previous deck/comdeck names unless an

SADDFILE directive 1identifies a specific order, If an

#ADDFILE does identify a specific order, the new
deck/comdeck names will be inserted appropriately. The
order of the deck names can be important because this
merged-data array is used to determine the order that decks
are processed (order of decks in the COMPILE file).

Any directives submitted with references to the
contents of a comdeck are processed first. The appropriate
program 1library record is brought into memory and the

specified change is made. The text portion of each active

card image is written to the scratch comdeck file and the
text portion of all card images is written to the OUTPUT and
\ L. NEWPL files (according to MODIFY control card parameters
selected)., After all selected comdecks have been updated or
4 introduced, any remaining comdeck records are brought into
| memory and the text portion of the active card images is

written to the scratch comdeck file. The scratch comdeck

file is used when the contents of decks are written to
COMPILE (to replace #*CALL directives with the contents of
the comdeck specified on the ®CALL).

Any remaining directives, referencing the contents of a
deck, are processed next. The order of the decks selected
depends on the run mode. The "full" mode selects decks in
the order encountered on the merged-data array. The "quick"

N mode selects those decks specified on ¥#COMPILE directives,

by

_ i . i i A - v, b 2 RSSO R -
N N S : -

in the order encountered on the merged-data array. However,
if the "K" control card parameter is specified, the decks

are selected in the order specified on the #COMPILE

directives. The "normal" mode selects those decks specified

on ®COMPILE directives and decks to be updated, in the order
encountered on the merged-data array. However, if the "K"
control card parameter is specified, the decks are selected
in the order specified on the #*COMPILE directives followed
by the decks updated 1in the order encountered on the

merged-data array.

As new deck names are selected, the scratch input file
is searched looking for the deck's input-data records. Each ﬁ
_ 1 input data record is used to generate a card image, and the
[4 text portion of the card image is written to the appropriate i
files. Continuation records are generated automatically as i
they become necessary.

As previously known deck names are gselected, the REC
number element of the directory entry is used to bring the

deck's (first) record into memory. If the deck is not to be

updated (no directives reference the contents) the record is
written to NEWPL. If the deck is to be updated, the text
portion of each card image is brought out of its compressed
format (regains its original image in a 80-byte field).

The card image sequence number is examined, looking for
a match with the sequence number specified on the deck's
update directives. If the sequence numbers do not match,

the text image is written to the OUTPUT, COMPILE, and/or

' u 5

| T, AR Ry P R ST VA MR R T o v O~ AT AR S P IR Rt

PO AN S ki . Loaliati s o~ oo e -

NEWPL files. If the sequence numbers match and a change 1is
to be made, the status of the card image is changed (active
to 1inactive or inactive to active), the text 1image 1is
written to OUTPUT, and a card image 1s generated for the
NEWPL record. The specified change 1is made to the text
image, the new text image is written to the OUTPUT and
COMPILE files and a card image is generated for NEWPL. Ifr
more card images are located in a continuation record
(indicated by the fourth element in the directory entry),
that record is "brought in" and the process continues until
all records storing the deck's card images have been
processed.

A certain amount of processing control is handled by
the routines used in building the OUTPUT, COMPILE, and NEWPL
files. A carriage control character is assigned to each
OUTPUT record written, allo;ing only a predefined number of
printed lines per page, starting each page with a header and
numbering each printed page. The routine that builds
COMPILE must examine each active card image and replace any
®CALL directives with the appropriate comdeck records, The
routine that builds NEWPL insures that there are enough
words available in the integer array to hold the card image.
If the card image will not fit, the array is written to the
appropriate NEWPL record and a continuation record is
started. If the previous version (OLDPL) did not require a
continuation record for the deck, the next available REC

number is fetched, the directory entry updated, and a new

46

directory entry generated.

Locating all the lines of code specified on a #YANK
directive can require more search and processing time. The
#YANK 1identifies correction sets to be revoked, where a
correction set may have changed card images spanning across
a variable number of decks/comdecks, which may span across a
variable number of records. The ident name is located in
the directory and the REC number element of the entry is
used to bring intc memory the first deck containing a change
specified by the correction set. All the card images in the
deck's record(s) are examined and written to the appropriate
files. If the ident made changes to, say, five different
deck names and the contents of each deck is stored in two
records, the card images in the ten records would be
examined and processed as previously explained.

Once all decks have been processed, the NEWPL directory
record 1is generated. The OLDPL directory and the
merged-data array are used to generate the NEWPL directory.

The "Generate Source File"™ routine is executed only if
the user requests that the SOURCE file be generated. The
routine uses the NEWPL directory to first retrieve comdeck
records and then deck records, writing only "active" records
to SOURCE.

Rata Structures. The program contains common blocks to
allow the subroutines easy access to the common data
structures. The common area_includes 28 integer elements,

10 integer arrays, 6 character elements, 12 character

- i i gl g v . . - L . R
avm - et B Tl e inetiaions - Lo sl " BBRAE. .. . coc lopoe . e b et

arrays, and 5 1logical arrays. One of the 1lower-level
subroutines uses a stack structure to control the building
of file COMPILE.

The scratch comdeck file is used to contain the records
of all common decks, new and old. When file COMPILE is to
be generated with the contents of requested deck records,
each #CALL directive 1is replaced with the contents of the
comdeck specified. As comdeck records are written to file
COMPILE, any *CALL directives must also be replaced with the
contents of that comdeck specified. The stack structure is
used to store the placement of a #®CALL directive in the
scratch comdeck file so that remaining records of a comdeck

will also be written to COMPILE.

This concludes the discussion of analyzing and
developing the machine-independent utility MODIFY. Version

1 was implemented on the DEC VAX 11/780.

48

Pl RV N N A A e e S A € vy o - - SRSttt Seais G A ,,_______7_*

The primary objective of this project, as outlined by

AFWAL/AAWA requirements, was to provide a machine- |

independent software package emulating a subset of CDC's
UPDATE wutility progran. An additional objective was to
include additional features not available on UPDATE,
specifically a string search and replacement option. This

chapter summarizes the results of the MODIFY design and

implementation effort and provides a few recommendations to
enhance MODIFY.

N

Results
The MODIFY specifications described in the preceding

chapters of this report were completely designed, coded, and

Ty

implemented. However, as of this date, not all of the
functions have been thoroughly tested and validated. The
complete package should be available by the end of this

month, accomplishing all the functions described.

Recommendations
ﬂ Three areas of improvement have been identified and
J
‘R will be discussed: additions to the MODIFY c¢ommand)

] language, revisions of the program to provide interactive
'i! capabilities, and the inclusion of more output list options.

MODIFY is designed to accomplish normal update/

[. retrieval functions; however, as indicated by the number of

49

commands available in CDC's UPDATE package (e.g. 41 direc-
tives), MODIFY is limited (14 directives). The inclusion of
additional directives would enhance MODIFY, specifically in
the area of removing obsolete names from the program library
directory. . .

MODIFY is designed to accept batch inputs (via cards or
intercom). Because of the growing availability of CRTs,
MODIFY would be a more valuable tool if it was redesigned to
allow for interactive use. That is, include the 1logic
necessary to prompt the user for the actions desired.

The last recommendation to enhance MODIFY includes the
addition of more output 1list options. The two options
included in UPDATE but not in MODIFY, are suggested: A
listing of all active compile file directives and a listing
giving the number of active/inactive cards by deck name and

correction set identifier.

50

i LR WG

10.

R S T DTNPERR LR

Bibliography

Applied Data Research. Ihe LIBRARIAN User Reference

Mapnual, SL2G-10-00. Release 5.5. Applied Data
Research, Inc., August 1976.

Balfour, A. and D. H. Marwick. Programming in Standard
FORTRAN 77. New york: North-Holland Inc., 1979.

Control Data Corporation.

400. St. Paul,
Minnesota: Control Data Corporation, 1973.
Control Data Corporation.
60342500. Revision H. Sunnyvale, California:
Data Corporation, January 1978.

Control

Graham, David C., Lewis P. Gaby, II, and Clifford E.
Rhoades, Jr.

Development and Management. Kirtland Air Force Base,

New Mexico: Air Force Weapons Laboratory, Air Force
Systems Command, Qctober 1976.

Hurt, James J. -

Source Programs. DTIC AD Number: AO34524. U, S. Army

Armament Command, Research Directorate, April 1976.

Models of

Kessinger, Richard L. and Howard A. Markham.

IV, Prograpmers's Guide. Contract DAHC19-69-C-0017;
DTIC AD Number: 923126L., McLean, Virginia: General

Research Corporation, August 1974,

OpCode. Ihe HISTORIAN User's Manual.
OpCode, Inc.

Houston, Texas:
Pansophic Systems.

PANVALET User Reference Manual QS,
QSUP10-7811. Version 10. Pansophic Systems, Inc.,1978.

Wagener, Jerrold L.

EORTRAN 77 Principles of
Programming. New York: John Wiley & Sons, 1980,

51

- r——

s YO AR S R S el - <o — ey coger ol S B RN -3.——H

. 52 :

e i . -enuisi vl vy s BISIRNOET

This appendix contains five tables providing a detailed
account of the features, directives, file characteristics,
job control parameters, and list options of the Control Data
Corporation (CDC) UPDATE utility package. A discussion of

these items may be found in the "UPDATE Characteristics"

section of Chapter II.

shiunitienncu

B B LA™ B . e s tw n L m_mnr o A T it Lot .

Table A-I

UPDATE Features

~ Creation of a program library from source decks.

- Copying of o0ld program libraries from sequential to
random format and vice versa.

- Merging of two program library files.
- Updating of source decks by inserting, deleting, and
restoring cards according to sequence in the deck or

according to correction set.

- Ability to completely and permanently remove correction
sets from the program library.

- Generation of a compile file containing corrected
output acceptable as input to other processing
programs, such as compilers and assemblers.

- Processing of directives, new text, and new source
decks from a file other than the job input file.

- Production of fresh source decks from the progran
library.

- Generation of a new, updated program library.

- Comprehensive list output noting any changes occurring
during the run and status of the program library.

- Ability to change the directive card master control i
character.

- Recognition of abbreviated forms of directives and
capability of turning off the search for the
abbreviated forms to speed up processing.

- Ability to use full 64-character set, including the
colon.

- Checksumming of program library.

L
I'd

B e B A~ K 0w A R b mseae e AG e i, Rt | N I AN i

Table A-II ;

UPDATE Directives

Name Abbreviation Function
$ABBREV none Abbreviations will be recognized
®ADDFILE $AF Add a deck or comdeck to the PL :
1
*RBEFORE B Adds the records following the

BEFORE before specified location

®CALL #CA Replaces this directive with the
contents of the comdeck identified
when the deck/comdeck is written to
file COMPILE

®CHANGE %CH Change the name of a correction set
defined by an IDENT

n] #COMDECK #CD Introduces a common deck, common
code which may be inserted into a
deck or another comdeck when CALLed

¢

. #COMPILE *C Specifies decks to be written to
4 file COMPILE for later compilation

#COPY CY Copy specified records from one
deck/comdeck to another deck/comdeck

*CWEOR $CW Conditionally writes an end-of-file
indicator in file COMPILE

BDECK #DK Introduces a source deck, usually
contains a source program but can
contain job control language, sub-
programs, data, etec.

®DECLARE 2DC Identifies decks/comdecks to be
altered, protects against
inadvertant updates

SDEFINE *DF Establishes conditional condition to
be tested by #*IF
®DELETE *D Specified records are flagged as
\ inactive and optionally replaced

‘ with records following the DELETE

L8] none Reverses the effects of YANK cr
SELYANK on specified correction set

it

' 55

e & oy T
]
Table A-II, Con't
; UPDATE Directives
3
E Name Abbreviation Function
#DONT *DT Terminates #DO
®END none Denotes end of source code
BENDIF #EI Indicates the end of conditional
text, terminates *IF
®ENDTEXT $ET Indicates the end of text,
terminates #TEXT
BIF none Conditionally writes text to file
COMPILE
#IDENT 21D Introduces a correction set
) #®INSERT *I Adds the records following the
INSERT after the specified }ocation
SLIMIT $LT Specifies maximum size for the list
output file
#LIST] Terminates effects of ®NOLIST
®MOVE M Reorders decks while producing NEWPL
#NOABBREYV ENA Do not accept directives
abbreviation format
#NOLIST *NL Stops the listing of input file
records
SPULLMOD BPM Recreates correction sets
®PURDECK *PD Permanently removes all records of
specified deck/comdeck
$PURGE &p Permanently removes all records of
specified correct set, restores
decks/comdecks to previous state
®READ ®RD Temporarily read from an alternate
directives file then return to INPUT
i SRESTORE ®R Specified records are reactivated
. and optionally inserts the records
following RESTORE
il
. 56
44

Table A-II, Con't

UPDATE Directives

Abbreviation

Name Function

BREWIND %RW Repositions specified file to first
logical record

#SELPURGE #SP Permanently removes records of
specified correction set located in
specified deck/comdeck

#SELYANK ss5Y Deactivates records of a correction
set located in specified deck/
comdeck

#SEQUENCE #3 Resequences active cards and purges
inactive cards in specified
deck/comdeck

#SKIP #5K Skip specified logical records in
specified file

#TEXT #T Treats following records as data,
allowing data to have asterisk in
column 1

®WEOR "y Writes end-of-file indicator in file
COMPILE

#YANK #y Deactivates all records of specified
correction set, restores
decks/comdecks to previous state

#YANKDECK #YD Deactivates all records of specified
deck/comdeck

®/ none Indicates comment card

57

PO

PR Te—

’ o= S . . —czm— e

i’ i i . d - . 'v\‘.‘y_'u o LS -
- R~ £y ‘

Table A-III

UPDATE File Characteristics

File Name Type Storage Function
INPUT Coded Sequential Provides control infor-
mation
OUTPUT Coded Sequential Contains LIstings
COMPILE Coded Sequential Contains card images for
compilation
SOURCE Coded Sequential Contains "active card
images with no sequencing
information
OLDPL Binary Random or Contains old program
Sequential, 1library
Compressed
NEWPL Binary Random or Contains new program
Sequential, 1library \
Compressed ;
UPDTSCR ## s Used to make copy of decks f
] to be written to file ‘
COMPILE 5
UPDTCDK LA s Used to hold common decks
for later expansion of
#CALL cards
UPDTTPL LA LA Used as temporary progranm
library
UPDTEXT LA LA Used to copy card images to
be inserted in correction
run
UPDTAUD LA Ll Used to hold temporary ¢
audit information i
UPDTPMD LA LA Used to collect card images
in response to PULLMOD
directive

** Information not provided

v 58

i « oo o Eaemper IS g ST £ =0 ey Caa Rl TP e—— T ——

Table A-IV

UPDATE Job Control Parameters

Significance

Sequential-to~-random 20py

Random~to-sequential copy

Compile file output

Data width

Edit; provides a means of cleaning up old
program libraries

Full update

Generate separate PULLMOD output file

Header change

Input file

COMPILE file sequence

List options

Merge two program libraries

New program library output

List ocutput file

0l1d program library

Quick update

Rewind files

Source output file

Source output file excluding common decks

Debug mode

Sequential new program library

Compressed compile file

AR SR o

D . PR X

Table A-IV, Con't

UPDATE Job Control Parameters

Option Significance
Z Compressed input file
8 80-column output on compile file
bd Master control character
/ Comment control character

cABaiEE rmaan e

Table A-V

«
UPDATE List Options

Option Significance

A Lists known decks/comdecks/ident names,
deck names written to COMPILE file, and
known definitions

F All selections other than 0

0 Suppresses all UPDATE listings

1 Lists cards in error and the associated
error messages

2 Lists all active UPDATE directives
encountered either on input or on the old
program library

3 Lists all cards that changed status during
UPDATE run

y Lists all non-UPDATE directives encountered
in the input streanm

5 Lists all active compile file directives

6 Lists the number of active and inactive
cards by deck name and correction set
identifier

7 Lists all active cards

8 Lists all inactive cards

9 Correction history of all cards listed as a

result of list options 5, 7, and 8

61

syegrrefiumtnyt Y0l tdnens i

e e

cag. e oy
[R

it el danes e 0,) T s S e R .

FORTRAN 77 requires that the length of records in a
direct-access file be provided by the RECL parameter on the
OPEN statement. Because the MODIFY program library is a
direct-access file, the record 1length assignment must be
determined prior to compilation. This appendix provides a
detailed discussion of the record length values selected for
the DEC VAX 11/780 and the CDC Cyber T74/750 computer
systems, as required by the AFWAL/AAWA processing
environment. The unit of assignment is machine dependent,
but since both the VAX FORTRAN and CDC FORTRAN requires that
the assignment be in "words"™, this discussion will focus on
the number of words needed.

The AAWA personnel have been using program libraries to
store a large number of decks containing a minimal number of
cards. The requirement was established by AAWA personnel
that a record 1length value be selected which would
accommodate approximately 500 directory entries and allow
each program 1library record to contain approximately 150

card images.

YAX Recurd Length Asslanment
The smallest addressable unit of information on a disk
is a 512-byte block (128 words). Blocks are logically

grouped into a cluster which is the basic unit of disk space

63

o b m—t e W

D N VU VIV N SN DN

allocation. The number of blocks in a cluster is
installation dependent and currently AAWA personnel have
each of their three disk packs configured differently (3, 6,
and 11 blocks in a cluster). The disk pack to be used to
store MODIFY contains 3 blocks in a cluster; therefore, the
record length value selected must be in increments of 38%

words (evenly divisible by 384):

3 blocks #* 512 bytes/block + 4 bytes/word

= 384 words/cluster

The requirement to allow 500 directory entries requires

that the record length be at least 3002 words:

((500 entries * 6 words/entry) + 2 words/control)

= 3002 words/record

To allow 500 directory entries and to stay within a 3-block

cluster, the record length assignment of 3072 words was

selected:

3002 words/record + 384 words/cluster
= 7.8 clusters/record
384 words/cluster * 8 clusters

= 3072 words/record

64

i~ G o et e b . e ouh® e | Me T D e L . "
e bt n s - —— T . - -~ . -

The 3072-word record length accommodates 511 directory

entries. Two words are used for the directory control

k. information (the next REC number available and the next

directory word available), leaving # words unused:

3072 words/record + 6 words/entry
= 512 six~-word entries
512 six-word entries - 1 six-word entry

= 511 directory entries

1 six-word entry - 2 words for control

= 4§ words unused

The control information portion of each card image
requires an average of 7 words (this includes one set of
correction set information words). The text portion of each
card image requires an average of 8 words (based on 32 bytes
of text + 4 bytes/word). Therefore, each card image

requires an average of 15 words. The 3072-word record i

length accommodates approximately 200 card images:

Ty

3072 words/record + 15 words/card image

= 204.8 card images/record ‘4

The allowance of 200 card images is above the 150-card- 3

images~per-record requirement; however, many changes to the

Ty

decks can be expected. The AFWAL/AAWA

contents of

environment involves "testing an idea" which requires many

correction sets (many ident directory entries). Each change
in the correction set, in turn, causes a 2-word correction-
set-information set to be generated for each card image
specified in the change. The 3072-word record reasonably
accommodates both the 500-directory-entries-per-record

requirement and the 150-card-images-per-record requirement.

Cvber Record Length Assignment

The smallest addressable unit of information on a disk
is a block, where a block must begin on a word boundary.
The requirement to allow 500 directory entries requires that

the record length be 3002 words:

((500 entries * 6 words/entry) + 2 words/control)

= 3002 words/record

where the "2 words/control"™ is reserved for the next REC
number available and the next directory word available.

The control information portion of each card image
requires an average of 7 words (this includes one set of
correction set information words). The text portion of each
card image requires an average of 4 words (based on 40 bytes
of text + 10 bytes/word). Therefore, each card image
requires an average of 11 words. The 3002-word record

length accommodates approximately 275 card images:

66

—

il o o AL @ 3 e O TS . Pl el oot 3 o
PSNOEA At RO T b o435 el S NPR Vi ek e A sl Ge BSOS LA

e "

3002 words/record + 11 words/card image

z 272.91 card images/record

The allowance of 275 card images is well above the 150-card-
images~-per-record requirement. As previously stated, the
AFWAL/AAWA processing environment involves a lot of testing
of ideas, where changes are made to see the effects. The
3002-word record length assignment may cause a lot of wasted
space in each record (depending on the number of card images
in the record and the number of correction set information
words generated), but the assignment will accommodate the
directory-entry requirement.

This discussion shows that the record length assignment
is dependent upon the user's needs. Depending on the
processing environment, a trade-off may have to be made;
that is, allow for many correction sets in the directory and
waste disk space in the deck records or allow for fewer
correction sets and allow more efficient use of the disk

space.

67

T el St g ot - e e . ;

" 68

e o il D SO L S o i Ve S i s i - . < QUM CimaTARLL s ud it SO e L e TR AVIISTOPISNT SRR SOUE oy

I. Introduction L . L) - . L]] L] [] - L . L] L] * L] L] L] 70
II. DESigZN ¢ « ¢ o o o o o o o e o & o o s & « o o s T2

Library Structure . .« . « « & o o o o« ¢« o« o T2
MODIFY Files . - L L] L] L] [] . . . L] L] L[] L] L) L) 73

III. operation . . . L] . L] .] 3 .] . L] L] - L] . 3 . 77

Library Creation . « + &« &« « « &

Library Modifications/Retrievals 77

Card Image Status . ¢ & 4 4 & « o o o + o« « 19

Run ModeS « ¢ ¢ « o o o o o o o o« = s « o« o 80

Overlapping Corrections . . . « +« « + « « o« 80

% Resequencing . + « o o - o« o o o o o o o« o« o 81
Iv. Execution « « & O -

: MODIFY Control Card . « « « « o« o« o « o o+ o« 83
. Parameters « o« « o o « o 5 o o o o o o o « o 84
List options L] L[] . . L] L] L] [} L] L] - - * L] - * 86

v. Directives [] [. - L) . L] L] L] L] [] . * * . L] - []] 88

Format . . .

ADDFILE . « o ¢ ¢ ¢« ¢ o o« ¢ o « s o » « o » 90
CALL e 6 6 e & & & @ e e e e a2 s e s+ & e o o 91
COMDECK e o o & e & & e e a s @ « & e e e @ 93
COMPILE e & 8 8 & 6 e & 6 o+ & & & e o s+ o o 93
DECK 4+ « ¢ o o o « ¢ o o o o o o s o s « o« o 94
DELETE ¢ ¢ & ¢ ¢ o o o s o o o ¢ o« o o o o« » 95
EDIT e e & & e e 6 & e e & a o s &+ s a e 96
FILL e o & 8 & & &6 & a2 4 s a2 e & 8 0 e e+ o . 97
IDENT & 4 & « o o o o s o o o o s « o o o« « 98 1
INSERT ¢ & & e & 8 e & & & 8+ & e & & s o o e 99]
RESTORE e & s & & & & o o+ ¢ o e & & & o @ 99
SCAN e 6 & e e & & 8 & e & o & & e o s o o 0100
SEQUENCE . . ¢« o ¢ o« s ¢ « « o o ¢ o s o o 2101
YANK e & & & ¢ e & o a2 & s &6 e+ s v e s e o .101

VI. VAX/Cyber Job Control Examples . . . « « o« o « .103 "y

69

Appendix C
MODIFY User's Guide

I. troductio

MODIFY 1is a machine-independent software package
written in standard FORTRAN 77 and 1is capable of updating
and/or retrieving sets of data stored in one file called a
program library (PL). A program library contains "decks",
"comdecks", and "idents". A "deck"™ usually consists of a
source program, but may contain job control 1language,
subprograms, data, etc. A "comdeck", or c¢ommon deck,
contains common source c¢ode which may be inserted 1into
multiple decks or other comdecks. An "jident" identifies a
run correction set which includes directives and, optional-
ly, source-code records used in updating a deck or comdeck.

Writing a machine-independent software package cannot
be accomplished without some machine-dependent information.
Table C-I 1lists the required information which must be
provided before MODIFY is compiled, along with the values
assigned for the DEC VAX 11/780 and CDC Cyber 74/750
computer systems.

Chapter I1 provides a brief overview of MODIFY while
Chapter III a »rovides more detailed description of how the
user may use MODIFY. Chapter IV outlines 1in detail the
required user-supplied MODIFY Control Card, and Chapter V
outlines the optional wuser-supplied directive cards.
Chapter VI provides examples of Jjob control streams for both

the VAX and Cyber computer systems.

70

ot e

S 24, ninG

o ARl o v b RO~ it S — e

B eweeaa T LF

Table C-1I
Machine-Dependent Information

3 Information Needed Value Supplied '
VAX Cyber g_
t 4
Word Length (bytes per word)] 10 E
Record Length (words per record) 3072 3002 '
File Name Length (maximum allowed) 9 7
Input File Default Name SYS$INPUT INPUT
Output File Default Name SYS$OUTPUT OUTPUT
0l1d PL File Default Name OLDPL OLDPL
New PL File Default Name NEWPL NEWPL
Compile File Default Name COMPILE COMPILE
Source File Default Name SOURCE SOURCE
Master Control Character » »

Input File Unit Number
OQutput File Unit Number

0ld PL Unit Number

New PL Unit Number

Compile File Unit Number
Source File Unit Number
Alternate Input Unit Number
Alternate Output Unit Number
Serateh Input Unit Number
Scratch Output Unit Number
Sceratch Comdeck Unit Number

- O YV 0O 3 &£ W NN =+ oo

—t b

- -
- O W @©® 3 F W N =2 W,

B sl ;v' < . e~ 2% s, A R, e T it ADSINERE I . . ari o’ e m i miemmm e e o = - o - m———

II. Desizgn

This chapter provides an overview of the progranm
library structure and a description of the various files

accessible to the user.

’. Library Structure

The MODIFY program library is a direct-access organized
file containing unformatted I/0 "records”. One record is
used as the library's directory, in which at least one entry
is generated for each deck, comdeck, and ident introduced.
f, The remaining library records are used to store the contents
of each deck/comdeck introduced. If the contents of a deck
will not fit into one record, a continuation record will

automatically be used and an additional entry is generated

in the directory for each continuation record. An ident

correction set will cause "n" directory entries to be |
generated, where "n" is the number of decks/comdecks updated '
by the ident.]

One or more records are used to.store "card images" for
each deck and comdeck introduced. "Card images" contain
control information and the text portion of each data-input

card identified within a deck or comdeck. When a library

record is full and more data-input cards still exist for a
given deck or comdeck, MODIFY will automatically start
\ another record and continue generating card images until the

deck/comdeck data-input cards have been processed.

'*‘ 72

As data-input cards are received and card images

generated, the control information portion of a card image
is assigned an unique "dname.seqnbr" identifier. The
identifier assigned each card image will appear with each
data-input card (text portion of card image) in the output
listing and can be used to request changes to the text
portion of the designated <c¢ard image (via MODIFY
directives). MODIFY also has a "historical"™ feature
allowing any set of changes made to the contents of decks or
comdecks to be revoked. The control information portion of
a card image keeps track of any ident names which changed
the status of the card image. By including the ident name

on the #YANK directive, the correction set is revoked.

MODIFY Files

This section provides a description of all the files
accessible to the user, whereas the first section only
described the program library file. MODIFY also interacts
with five scratch files, but they are not described here
because the interaction is transparent to the user.

MODIFY optionally interacts with six user-accessible
files. Figure C-1 depicts this relationship. The dotted
lines indicate optional files, the use of which is deter-
mined by the type of run (creation or correction) and the
user-supplied MODIFY Control Card.

The default file names used for the VAX implementation

of MODIFY appear in Table C-1 of this user's guide. The

Input 01ld Pl

(1) _ (P)

MODIFY

/ N
/ ~ ~ -
S
Output <>
(0) New Pl Compile Source
(N) (c) 1 (s) [

Figure C-1. MODIFY User-Accessible File Interaction

alphabetic character in parenthesis appearing in Figure C-1{
indicates the MODIFY control card parameter which may be
used to change the default file name. With the exception of
a creation run, the old program library file is the latest
version of the new program library file generated from a
previous MODIFY run.

The characteristics of the MODIFY user-accessible files
are listed in Table C-II. The input file must contain the
MODIFY Control Card and may contain a combination of
directives, or directives and data-input cards. The

contents of the output file is determined by the type of run

T4

i SRR

o

-

Table C-I1I

MODIFY User~Accessible File Characteristics

Record }
File Type Storage Length Function
014 PL Unformatted Direct, User- Contains old PL

Compressed Supplied

New PL Unformatted Direct, User- Contains new PL
Compressed Supplied

Input Formatted Sequential 80 Contains MODIFY
card and can con-
tain directives
and data records

Output Formatted Sequential 132 Contains listings
requested via the
"L" control card
parameter

Compile Formatted Sequential 80 Contains execut-
able program 1
statements suit-
able for
compilation

Source Formatted Sequential 80 Contains "activen
card images ;1

(default listing options for the creation or correction run)
or the options specified by the user on the MODIFY Control
Card. The compile file contains the text portion of all

non-directive, active card images. The #*DECK and ¥#COMDECK

directives are ignored and #CALL directives are replaced
with the contents of the comdeck specified. The source file

contains the text portion of all active card images. This

75

e xS e &

.- Ty LW eaan g LRSS o Pt L

s

v g bl o
— ——— LYl ol Rt

includes the #DECK, #*COMDECK and #*CALL directives which
allows the user to specify the source file as input to a
MODIFY creation run. This provides a "clean"™ progranm
library (no correction set information, thereby saving
storage space) for the same computer system or allows for
easy transport of the program library to another computer

systen,.

76

i L O o

> SRR SRR R

e R T R R e - PIBBE S sy pecn L -

III. Qperation

This section presents an overview on how to use MODIFY
to create a program library and to maintain/retrieve source

code stored in a program library.

Library Creation

A one~time-only creation run must establish the program
library before any correction runs may be executed. A
ereation run is implied when MODIFY does not encounter any
directives prior to encountering a ¥®*DECK or #COMDECK
directive.

The user must determine what material will be input and
precede each deck with the appropriate #DECK or #COMDECK
diregtive. Data-input cards up to the next #*DECK or
#COMDECK directive comprise the deck. A common deck must be
placed prior to any of the decks calling it.

Each data-input card (including the #*DECK or #COMDECK
directive) will be assigned an unique identifier in the form
of "dname.seqnbr®. The "dname" will be the user-assigned
name found on the #DECK or ®#*COMDECK directive, and the
"seqnbr" is a sequence number assigned by MODIFY, starting

with the value of 1 for each new deck introduced.

Library Modifications/Retrievals
Modifications to a program library may include changing

the contents of existing deck/comdecks and/or adding new

77

Tk

decks/comdecks to the 1library. Once all updates are
complete, the user may want to simply "retrieve" the
contents of an existing deck.

Changes to the contents of existing decks/comdecks are
accomplished by a "correction set", a set of directives
indicating specific updates and optionally includes data
cards which are to be inserted at specified locations. The
name of the correction set is assigned by the user via the
#®IDENT directive. Newly inserted cards will be assigned a
"dname.seqnbr" identifier, where "dname" is the ident name.
Sequence numbers will be assigned (starting with the value 1
for each ident introduced) as they are inserted into the
program library, not necessarily in the order they appear in
the correction set. Multiple ¥IDENT directives may appear
in the input file.

Two methods are available to add new decks/comdecks to
an already existing program library. In both cases, the
"dname" portion of the "dname.segnbr" identifier will be the
name specified on the #*DECK or #®COMDECK directive. The
easiest method is simply to precede each deck with the
appropriate #®*DECK or #*COMDECK directive and include this as
part of the input file. The decks will be added to the end
of the existing program library. Care must be taken, how=
ever, to insure that a ®*DECK or #COMDECK directive is not
the first directive of a correction run, Recall that a
"ecreation™ run is implied if the first directive encountered

is a *DECK or #COMDECK directive.

P b= ot g L A ARG

The second method of insertion can be used if (1) the
sole purpose of a correction run is to insert additional
decks, (2) the deck is to be inserted in the middle of the
existing program library, or (3) the deck to be inserted is
located on another file. Each deck must be preceded with
the appropriate ®DECK or #*COMDECK directive and the
difference is that an ®*ADDFILE directive must precede the
first #DECK or ®COMDECK directive being added. See the
"ADDFILE" description, Chapter V, for complete details.

If the purpose of a MODIFY run is simply to retrieve
the contents of an existing deck (i.e., no updates desired),
specify the "quick" run mode via the MODIFY control card and

specify the deck name(s) on a *COMPILE directive.

Card Image Status

As previously explained, the program 1library deck
records (not the directory record) contains multiple card
images. A card image is generated for each data-input
card in a deck and consists of control informatioq and a
text portion. The status of each card image is either
"active"™ or "inactive". All newly generated and RESTOREd
card images are "active". Any card images DELETEd, EDITed,
FILLed, or YANKed are "inactive",. A correction set
information designator 1is added to the control information
for a card each time the status of the card is changed. For
any one card image, the user may change the status a maximum

of twenty times. Only "active" card images are written to

79

s —a ks

oo

B

. e v % AR by < ot

the COMPILE and SOURCE files.

Run Modes

The mode parameter specified on the MODIFY Control Card
controls the order in which decks are written to the compile
file,

The "quick" mode ("Q" parameter specified) allows
#COMPILE directives to specify decks written to the compile
file in the order encountered on the 1library. If the "K"
parameter is also specified, the decks are in the order
specified on *COMPILE directives.

The "full"™ mode ("F" parameter specified) ignores
®COMPILE directives and updates all decks in the sequence
encountered on the library.

If neither "full" nor "quick™ is specified, a "normal™
mode is implied. The "normal" mode writes to the cémpile
file all decks specified on ®*COMPILE directives plus decks
updated, in the order encountered on the library. If the
"K" parameter is specified, the decks are written in the
order specified on ®*COMPILE directives followed by the decks

updated.

Qverlapping Corrections

An "overlapping correction"™ occurs when a card image is
specified on more than one update-type directive. This may
occur when a range of card images 1is specified on two

directives and a card image falls in both ranges. When this

80

occurs, the directive selected first will be processed while
any succeeding directives (specifying a "dname.segbr”
already processed) will be written to the output file along
with a message stating that the directive was not processed.

The order of the directives submitted by the user has
no bearing on the order in which directives are selected.
The order in which directives are selected is first
determined by the run mode which selects the processing
order of decks. The directives pertaining to a given deck
are evaluated and selected in ascending order by the
"seqnbr" of the first "dname.seqnbr" identifier on each

directive.

Reseguencing

After frequent modifications to a program library, it
may become necessary or desirable to "clean up" the library.
Two methods are available to accomplish this task.

The first method allows specified decks to be
resequenced, eliminating all "inactive"™ card images and
renumbering "active"™ card images starting with the value 1.
The drawback of this method is that the library directory is
not "cleaned up". That is, ident entries which only apply
to a resequenced deck aré not removed.

The second method resequences the entire library. The
generation of a source file provides a complete set of all
"active" card images which may subsequently be specified as

the input file to a MODIFY ereation run.

81

s i

b

Sa

T

. s R SN AN 2 W bbb el
s o wmake L . ¢ g G et s X - . TR R R T RNy Rl ol w7 . K b G . _ IR

R T o - i it X .

Any time decks are resequenced by either method, the

history of all changes is lost.

This chapter has provided a general description of how
a user might wuse MODIFY. The next chapter provides a
detailed description of the MODIFY Control Card which must
be included in the MODIFY input file, and the succeeding
chapter provides a detailed description of the MODIFY

directives.

-

82

&

RN A I oo« A v a1 NS <\ - s St v e i e s AR SR - -H tbtvat

IV. Exegution

Once the MODIFY program is invoked, the first

data-input card on the system-designated input file (i.e.,

ke L

the card reader) must be the MODIFY Control Card. The
parameters specified on this card allow the user to (1)
change the default file name assigned to a user-accessible i
file, (2) change the default value of the directive card
master control character, (3) specify an alternate input

file where the run directives/data cards are.to be located,
(4) set the run mode, (5) indicate which of the output files
are to be generated for the run, and (6) indicate the
contents of the output listing file. This chapter provides
a detailed description of the MODIFY Control Card and the

various optional parameters which are available,

MODIFY Control Card ‘
The MODIFY Control Carcd must be the first data-input 1

card on the system designated input file. The card must be
provided even though all the optional parameters are

omitted. The format of the MODIFY card {s:

MODIFY,p1,p2,...,pn

where "pi1,p2,...,pn" designates the optional parameters

discussed in the next section. The word "MODIFY" must

appear in columns 1 through 6, delimiting "MODIFY" and each

83

P i A T e B e G sl AT esadd

parameter with a comma or at least one blank.

Parameters
This section provides the correct format and a
description of each optional parameter which may appear on

the MODIFY Control Card.

Qption Significance
C - Compile file output ;

omitted or C The compile file will be
generated, the contents of which
is determined by the run mode
and by the directives submitted
during the run.

R - C=filename The compile file will be
{ generated and identified by the
named file.

C=0 (zero) The compile file is not
generated.

F - Full update mode

F The full run mode is specified.
All known decks are written to
the compile file.

omitted - F and Q omitted specifies the

‘ normal run mode. The compile
file will contain only those
decks specified on #COMPILE
directives and/or those d:z2cks
updated during the run.,

e e s 42 s Vi 552 winchn s

I - Input file

omitted or I The input file will be the
system-designated input file]
(i.e., the card reader).

I=filename The input file will be the named
file.

- 84

s Qption significance

1 K - Compile card sequence

K The compile file will contain
those decks specified on
®COMPILE directives and/or those
decks updated, in the order
specified by *COMPILE directives
followed by decks updated.

omitted The compile file will contain
those decks specified on
#COMPILE directives and/or those
decks updated, in the order l
encountered on the library. ;

L - List options

L=x Allows the user to specify the
contents of the output file.
The "x" may be any one, or any
combination, of the list options
described in the next section.

omitted If creation run, L=zA12 is
automatlically selected. If
correction run, L=A1234 is
automatically selected.

N - New program library output

N A new program library will be
generated. 7
omitted A new program library will not

be generated.

N=filename A new program library will be
generated and identified by the
named file.

0 - Output file
omitted or O The output file will be

generated on the system-
designated output file.

7 sl b i o e <5 A

O=filename The output file will be
generated and identified by the
named file.

Option Significance

P - 01ld program library

omitted or P The old program library file is
expected to be on the default
unit designator and identified
by the default file name.

P=filename The old program library file is
expected to be in the named
file.

Q - Quick update mode

Q The quick run mode is specified.
Only decks specified on ¥*COMPILE
directives will be written to
the compile file.

omitted Q and F omitted specifies the
normal run mode. The compile
file will contain only those
decks specified on *COMPILE
directives and/or those decks
updated during the run.

i S - Source file i

S A source file will be generated. h
omitted A source file will not be

generated.
Szfilename A source file will be generated

on the named file.

®# _ Master control character

#=zchar The master control character
(first character of each
directive) for the run is
"char'.

omitted The master control character for
the run is the default master
control character.

List Optiong

The 1ist ("L") MODIFY Control Card parameter may be

used to alter the default 1list options (creation run is

. Trahild g PO
A .] B R R

L=A12, correction run is L=A1234) controlling the contents

of the designated output file, The format of the 1list

parameter is :

L=xxx

where "x" designates any of the following options.

Option Significance
>k A Lists known decks/comdecks/ident names and
E deck names written to COMPILE file
»_{ F All selections other than 0
2 0 Suppresses all MODIFY listings
; 1 Lists cards in error and the associated

error messages

2 Lists all active MODIFY directives

.encountered either on input or on the old

program library 1

3 Lists all cards that changed status during

MODIFY run
y Lists all non-MODIFY directives encountered

in the input streanm
7 Lists all active cards
8 Lists all inactive cards
g9 Correction history of all cards listed as a

result of list options 7 and 8

B Three alphabetic lists by deck, comdeck, ;
and ident names {

87

V. Directives

In order to create a program library or modify/retrieve
a deck or comdeck in an already existing program library, a
set of MODIFY directives must be submitted. The set may
consist of one or more directives and a variable number of
data-input cards to be inserted into the program library.
The MODIFY directives allow the user to (1) identify a
correction set which may delete lines of code, insert lines
of code, restore lines of code, search and replace lines of
code, search and print lines of code, and replace columns in
lines of code, (2) identify the beginning of a deck or a
common deck, (3) identify common code to be inserted into
the contents of a deck or common deck, (4) specify an
alternate input file where additional directives and
data-input cards may be found, {(5) resequence line-of-code
identifiers within a deck or comdeck (6) revoke the changes
made in a previous run, and (7) retrieve the contents of
decks/éomdecks suitable for compilation. This chapter
provides a detailed description. of the fourteen MODIFY

directives.

Format
This section describes the general format of the MODIFY

directives. All directive cards contain three fields: an
identifier field, a name field, and a parameters field. The

identifier field contains the master control character

88

Al e o

AD-A115 553

UNCLASSIFIED

7 -8
oTic

22

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO==ETC F/6 9/2
WIFY. MACHINE=INDEPENDENT MAINTENANCE PROGRAM. (U)

C 81 N J MURPHY
AFI T/6CS/MA/810-5

NL

(normally an asterisk) in column 1, The name field starts
in column 2 and contains the long or short form of the
directive name. The name field must be separated from the
parameters field by a comma or by at least one blank.
parameters field contains a variable number of parameters,
where a mixture of parameter formats is
dependiﬁg on the directive. The following list provides the

acceptable formats, a description of each format,

directives where each format is acceptable:

EFormat Description

9 dname The deck or comdeck name;
must be one to nine

characters in length

idname The correction set (ident)
name; must be one to nine
characters in length

filename The alternate input file
name; character length is
machine dependent

The deck named dname_ and
all decks up to and in-
cluding dname, , as they
appear in-the library
directory

dnamea.dnameb

1dnamea.1dnameb The ident named idnamea and
all idents up to and in-
cluding idname, , as they
appear in the Eibrary
directory

89

acceptable,

Directives

$ADDFILE
®CALL
®COMDECK
®COMPILE
#DECK
®SEQUENCE

®IDENT
®YANK

*ADDFILE

*COMPILE
*SEQUENCE

#YANK

The

and the

e

Eormat Description Directives
lname.seqnbr The deck/comdeck/ident name SDELETE
and the sequence number $EDIT
within the deck/comdeck/ SFILL
ident; the line-of-code S#INSERT
identifier SRESTORE
#SCAN
/string/ The string of characters ®EDIT
to be searched/printed/ SFILL
replaced, delimited by any 8SCAN

character (other than a

a comma or a blank) which

is not in the string;

" string must be zero to
twenty characters in
length
column The column number where SFILL

replacement is to start;

must be greater than zero

and less than 81
The parameters within the parameters field must be separated
by a comma or at least one blank. The exact placement of
each format within a directive card's parameters field is

described in detail in the sections to follow.

#ADDFILE,filename,dname
AR
The ®ADDFILE directive designates ;n alternate file
where a #®DECK or #COMDECK directive and text data may be
found (filename), and designates where to 1insert the
information after the specified deck (dname) on the new
program library. If "filename" is the primary input file,

all cards following the #ADDFILE will be added until a

90

e o Sl N 0 e e s

- vl |

PO T

a0 3ot g e

A e

p. T AT Dy 4 R - C RIS NPT PRSIy, St e VI G

directive other than a ¥*DECK, ®COMDECK, or #CALL directive
is encountered. If "filename" is omitted, the primary input
file (INPUT or the file specified on the MODIFY Control Card
"I=" parameter) is assumed. Only one alternate input file
may be specified for each run. That is, if the "I" para-
meter is used to designate an alternate input filename, the
ADDFILE "filename”™ parameter cannot specify a different file
(added decks must be included in the "Izfilename”™ file). 1If
"filename"” is omitted and a "dname" specified, two commas
must separate the directive name and the "dname" specified.
If the add~after deck name "dname" is omitted, the decks
will be added to the end of the library. Only one ¥ADDFILE

directive may appear in any one MODIFY run.

Examples:

1) An ®ADDFILE is included in file INPUT, decks to be
added are immediately following the ¥#ADDFILE, and the
information is to be added to the end of the library.

*ADDFILE,INPUT
#ADDFILE

2) An *ADDFILE is included in file INPUT, decks to be
added are in file NEWFILE, and the information to be
added is to be inserted after deck name DK12.

#ADDFILE,NEWFILE,DK12

3) An *ADDFILE is included in the input file NEWFILE
(i.e., I=NEWFILE), decks to be added are immediately
following the ¥#ADDFILE, and the information to be added
is to be inserted after deck name DK12.

*ADDFILE,NEWFILE,DK12
*ADDFILE, ,DK12

The

contents

#COMDECK card) i1n place of the #CALL directive. Common
decks may call other common decks. However, a common deck
must not call itself or call decks that contain calls to the
common deck. A ®CALL is the only directive which may appear
within the contents of a deck or comdeck. It is treated as

a data card of the deck in which it appears.

Example:

A program library contains one deck, DK1, consisting of
a FORTRAN 77 program and two comdecks, COM1 and COM2,
consisting of FORTRAN 77 COMMON statements:

#CALL,dname
EcCA

#CALL directive designates a comdeck "dname", the

of which is written to file COMPILE (excluding the

- e —a

*DECK, DK1 *COMDECK,COM1

PROGRAM PROG1 COMMON/INT/I1,M
#CALL,COM1 COMMON/REAL/X,Y,2
#CALL,COM2

COMMON/DATA/COUNT,LENGTH

M=1 ®*COMDECK,COM2

. COMMON/CHAR/NAME
END

The contents of DK1, as it would appear in file COMPILE,

follows:

PROGRAM PROG1
COMMON/INT/I1,M
COMMON/REAL/X,Y, 2
COMMON/CHAR/NAME
COMMON/DATA/COUNT,LENGTH
M=1

#COMDECK,dname
#CD
The ®#COMDECK directive designates the name of a new
common deck "dname" and denotes its beginning. The contents
of a common deck is written to file COMPILE only as a result
of a ®CALL directive encountered in a deck or another
comdeck. The "dname" must differ from any deck or comdeck
names already in the 1library directory. The data cards
following the #COMDECK are considered part of the common
deck until a directive other than a ®*CALL is encountered.
No more than 999,999 data cards may be introduced by one
®COMDECK. A common deck must be introduced before the decks

or comdecks calling it are introduced.

'COMPILE,dname,,dnamez,dname3,...,dname

. n

'COMPILE,dnamea.dname

4C b

The ®COMPILE directive designates the name of the deck
"dname" to be written to file COMPILE. The first form
requests that one or more decks be written to file COMPILE.
The second form requests that the deck "dnamea" and all
decks up to and including "dname, " be written to file

b
COMPILE, as they appear on the library directory. The two

93

BT Wiy e tﬂw.n "ty

VAR K TRy ¥ W R W . L s _< Ty 2 b

e . T ey D
NS = o Uabn A, b 2t al

TR

types of formats may appear on the same #COMPILE., Any deck
introduced or any deck updated during the run will
automatically be written to file COMPILE. If "dname" is a
new deck name, the #DECK directive introducing "dname" and
its contents must precede the #COMPILE. The order of the
decks written to file COMPILE depends on the run mode (full,
quick, or normal) and the "K" parameter specified on the
MODIFY Control Card. No more than 300 deck names may be

specified (directly and/or indirectly) on one MODIFY run.

Examples:

The program library directory currently contains seven
decks: DK1, DK2, DK3, DKY4, DKS5, DK6, and DK7.

1) Write the contents of DK3 and DK4 to file COMPILE.
®COMPILE,DK3,DK4
%COMPILE,DKUY,DK3
SCOMPILE,DK3.DKY
2) Write the contents of all the decks except DKUY to file
COMPILE.
®COMPILE,DK1,DK2,DK3,DK5,DK6,DKT

#COMPILE,DK1,DK2,DK3
®COMPILE,DK5,DK6,DK7

®COMPILE,DK1,DK3,DK5,.DK?7

®COMPILE,DK1.DK3,DK5,DK6,DKT

8DECK,dname
#pK

The ®DECK directive designates the name of a new deck

"dname"™ and denotes its beginning. The "dname" must differ

94

- e T L R e T s e R e

N L T S PO O Ty Sy
U IW . 2 i A 4 . = vt

from any of the deck or comdeck names already in the library
directory. The data cards following the ®#DECK are
considered part of the deck until a directive other than a
#CALL 1s encountered. No more than 999,999 data cards may

be introduced by one #DECK.

DELETE

®DELETE,lname.seqnbr
%D

*DELETE,lname.seqnbra,lname.seqnbr

#D b

The ¥*DELETE directive designates the card, or a range
of cards, to be deactivated,. Any data cards following the
*DELETE will be inserted following the deactivated card(s)
on the NEWPL and OUTPUT files and will replace the deacti-
vated card(s) on the COMPILE and SOURCE files. The inser-
tion process will continue until a directive other than a
#CALL is encountered. The first form requests that one
card, one line of code, be deactivated. The second form
requests that the card "lname.seqnbra" and all cards up to

and including "lname.seqnbr " be deactivated. The range may

b
include cards previously deactivated. The ®DELETE does not
actually delete cards but flags them as inactive. The cards
retain the same "lname.seqnbr" identifier and may be
referred to in the same way on a succeeding run. The

"lname™ may be a deck name, a common deck name, or an ident

name. The "seqnbr" may not exceed 999,999. Each card's

95

i e s T8 R P

"lname.seqnbr® identifier will be printed with its text on 1

the output listing file.

Examples:

A partial listing of the deck DKt follows, where a
previous correction set IDENT1 made changes as indicated by]
the line designator: i

®DECK, DK1 DK1 1
PROGRAM PROG1 DK1 2
INTEGER TABLE(8,1000) IDENT1 10
M=1 DK1 3
READ ®,(TABLE(J,M),Jd=1,8) DK1 y

1 IF (TABLE(1,M).GE.O0) THEN DK1 5

M=M+1 IDENT1 11
READ #,(TABLE(J,M),J=1,8) DK1 7
GO TO 1 DK1 8
ENDIF IDENT? 12

1) Delete the priming READ statement.
#DELETE,DK1.4
2) Delete all lines associated with the IF statement.

*DELETE,DK1.5,IDENT1.12 \

'EDIT,/string1/,/stringz/,lname.seqnbr
*ED

’EDIT,/string1/,/strin52/,lname.seqnbra,lname.seqnbr

2ED b 4

The #®*EDIT directive designates that a string of 1

characters "string1" be replaced by a string of characters 3

"stringz" on the card "lname.seqnbr", or on the range of

cards from "1name.seqnbra" to "lname.seqnbr ". If "string1"

b
is not found, no replacement takes place. The strings,

96

T e =t e o

W T T R T W T T T e e

S

Rheae 2

Sty

o
.-i:w"

"string1" and "stringz", may contain 2zero to twenty
characters and must be delimited by a character (other than
a comma or a blank) which is not in the string. The
delimiter used for "string1" may be different from the
delimiter used for "stringz". Each card in the specified
range which contains "string1" is deactivated and a new card
containing "stringz" in place of "string," is created. Ir
the strings are of different lengths, the characters on the
created card are moved appropriately. A warning message
will be 1issued if the moving of characters causes the text

to exceed 72 characters.

Examples:

1) Replace the characters "CONTINE"™ with "CONTINUE" in
line 10 of the deck DK1.

*EDIT,/CONTINE/,$CONTINUES$,DK1,.10

2) Replace the characters "FI" with "IF" in all 50 lines
of code in the deck DK1,

*EDIT,/FI /,/IF /,DK1.1,DK1.50

®FILL,column,/string/,lname.seqnbr
*FI

'FILL,column,/stringl,lname.seqnbra,1name,seqnbr

*FI b

The ®FILL directive designates that a string of

characters "string" be placed in the card "lname.seqnbr", or

in the range of cards "lname.seqnbra" to "lname.seqnbrb",

97

N ‘-v.v:whm'.i-s&u RN = »

a2 Y e o2 O P L 9 SR AR S S o k. e i

N A AR NG S R T e s sl - ~

starting in the c¢olumn number "column". "String" may
contain zero to twenty characters and must be delimited by a

character (other than a comma or a blank) whieh is not in

Sz o ko

the string. Each card in the specified range is deactivated
and a new card containing "string" starting in "column" is

created. A warning message will be issued if the replace-

ment of "string" causes the text to exceed 72 characters.

Examples:

i] 1) Place a "C" in column 1 of the DKt lines 10 through 15
' so that the lines will be treated as comments.

*FILL,t1,/C/,DK1.10,DK1.15

2) Remove the "C" from column 1 of the DK1 lines 10
through 15 so that the lines will again be executed.

$fILL,1,/ /,DK1.10,DK1.15

#IDENT,idname
#ID

The #IDENT directive designates ¢the name of a
correction set "idname"™ and denotes its beginning. The
"idname" must differ from any of the ident names already in
the library directory. The "idname" name remains in effect
until another #IDENT 1s encountered. Any card inserted by
"idname" will be given an identifier in the form of
"idname.seqnbr". Sequencing of new cards starts with one

for each 1ident. Any card introduced by an ®IDENT may be

7
R e < it
-

) 98 ¥

DET = RN, e TR TP PR i TR S s

changed up to a maximum of 19 times by succeeding #IDENT :
directives. Any card introduced by a #®DECK or #COMDECK may
be changed up to a maximum of 20 times by succeeding ®#IDENT

directives.

i #INSERT,lname.seqnbr
j *I
The SINSERT directive designates the card
"lname.seqnbr" after which the data cards following the
#INSERT will be inserted. The insertion process will
continue until a directive other than a ®CALL 1is
encountered. The cards inserted will be given an identifier
v in the form of "idname.segqnbr", where "idnamé" is the name ‘

on the *IDENT introducing the correction set.

#RESTORE,lname.seqnbr
®*R

#RESTORE,lname.seqnbr ,lname.seqnbrb
*R a

The #RESTORE directive designates the card, or a range
of cards, to be reactivated. Any data cards following the

SRESTORE will be inserted into COMPILE and NEWPL, following

the reactivated card(s). The insertion process will

continue until a directive other than a ®#CALL {is

99 |

e e Y e L

B BT c s

B AT S il <t~ ¢ AN e N R0 7o+ o o1+ .- R

encountered. The first form requests that one card be
reactivated. The second form requests that the card

"1name.seqnbra" and all «cards wup to and 1including
"lname.seqnbrb“ be reactivated. The range may include cards

already active.

'SCAN,/string1/,/stringzl,1name.seqnbr
#S5C

#SCAN,/string./,/string,/,lname.seqnbr_,lname.seqgnbr
1 2 a

*sC b

The #®SCAN directive designates tnat a string of
characters "string1" be replaced temporarily by a string of
characters "string2" on the card "lname.segnbr", or on the
range of cards from "lname.seqnbra" to "lname.seqnbrb".
The strings "string1" and "stringz" may contain zero to
twenty characters and must be delimited by a character
(other than a comma or a blank) which is not in the string.
The delimiter used for “string1" may be different from the
delimiter used for "stringz". Each card in the specified
range which contains "string1” is not permanently changed.
The text 1is used to c¢reate a temporary card containing
”stringz" in place of "string1" and the temporary card is
written to the output 1listing file. The #*SCAN does not
permanently deactivate nor create cards. The purpose of
this directive is to verify the effects of the string

replacements before the changes are actually made with the

#EDIT directive.

P . N
- i A ALy n e W 8D e WO s T e ol N - ST
i aATE y: 1 e A A e b 80D s, S = - vy

*SEQUENCE,dname1,dname2,...,dname
®s n

'SEQUENCE,dnamea.dname

*#S b

The ¥#SEQUENCE directive designates the deck or comdeck
"dname" to be resequenced. The first form requests that one
or more decks be resequenced. The second form requests that
the deck or comdeck "dnamea" and all decks and comdecks up
to and including "dnameb" be resequenced. All active cards
in "dname" are resequenced with the identifier
"dname,seqnbr", All history-type control information is
deleted from active cards and all inactive cards are purged,
thereby "cleaning up" the contents of the library record(s).
The ®SEQUENCE does not remove 4ident names from the

directory, even though all "idname.seqnbr" designators have

been purged.

'YANK,idname1,idname2,...,idname
2y n

'YANK,idnamea.idname

(D¢ b

The ®YANK directive designates the name of the
correction set M™idname"™ and causes the effects of the

correction set to be reversed. That is, any card introduced

101

U+ 2ns 2o B 11 am D ar, o St e

L, s

o~ e

i O T e

by the 1ident "idname" 1is deactivated
deactivated by "idname"™ 1is reactivated.

requests that one or more idents be yanked.

and any card
The first form

The second form

requests that the ident "idnamea" and all idents up to and

including "idnameb

" be yanked, as they appear on the library

directory. The two types of formats may appear on the same

#YANK.

Stmianiad L e

N = o iR e
e e . RN N e e . i R o g Qe ke e e Y TRl ek

[Eo% Y2 S

VIi. VAX/Cyber Job Control Examples

This chapter provides four examples of Jjob control
streams which could be used to invoke MODIFY on the Avioniecs
Laboratory's VAX computer system and the Aeronautical System
Division's Cyber computer system. The first two examples
illustrate the job control language used for DEC VAX 11/780
creation and correction runs. The last two examples
illustrate the job control 1language wused for CDC Cyber

T4/750 creation and correction runs.

VAX Creation Run
F $ JOB MURPHY
$ PASSWORD xxxxxx
$ RUN MODIFY
MODIFY,N
(Creation directives and source code cards)

$ EOJ

ctio

—

$ JOB MURPHY
$ PASSWORD xxxxxx y
$ RUN MODIFY
MODIFY,N

(Update directives and optional source code
cards)

$ EOJ |

T i — s

v
103

_— U . et o T S W e
- B T P TN » VLI v, o0 AL N " - o -
i T A T J TR : .

Qxhgn_ﬂngaiién_ﬂnn

e g @A TN, e e

NJM,T20. T820077,MURPHY,55533.
REQUEST,NEWPL, *PF,
ATTACH,MODIFY,MODIFYBINARY.

MODIFY.
CATALOG,NEWPL,PROGRAMLIBRARY.

7/879

MODIFY,N

(Creation directives and source code cards)

6/7/8/79

Syber Correction Run
NJM,T20. T8200077,MURPHY,55533. ;
REQUEST,NEWPL, #PF. !

ATTACH,MODIFY,MODIFYBINARY.
ATTACH,OLDPL,PROGRAMLIBRARY.
MODIFY,

] CATALOG,NEWPL,PROGRAMLIBRARY.
3 7/8/9

3 MODIFY,N

, (Update directives and optional source code
\ cards)

6/7/8/9 H

L e i

i 104

B o s WO i 5 bl Tt B s
= Sy -

105 \

L I et S ik S Al SRS

N G- St T Cals i w3 o e T iR Y Ak A PR

e e

Appendix D
MODIFY Functional Charts

3 This appendix provides an overview, first-level, and
second-level Structured Analysis and Design Technique (SADT)
functional charts. The SADT charts do not show housekeeping
functions, and they must show at least three and no more

than six functional areas on each chart.

106

AR e

. RN

g e

ST &

I114
ao4nos

3114
INdIN0 T

(0-V) moTAJaAQ weuBoad XJIAOW °L-q dJnBTJ

3114

Fd _—
ATIdNOD

a71d
TdM3N

KJIQONW

lllu\ W0
a11d

NOILOVSNVYL
LNdNI

ayvd
TOYLNOD
K3TAOW

AALAAE ki SN 1 I

e

& " b oW

Y

e i -

(0V) 8Jnjonualg TeuoT4doUNg KAIAOW

*g-q 2an314

h
aId
A11d A0UNOS J;/J
d40UN0S JLVYANID X40LDINIA
TdMAN
Nd
4114 I NR
TdMAN ///// AH“
€
4114 XUVHEIT SAWNYNG TdMEN
ATIdROD WVHDOHd SJIAILOANIA alvadn
SIVIS/SONIISTT | 41vadn F1Id 303AR0D HOS
] ¥ dTId SNVHL HOS N I1Id
14070
Nd
IN NN 2
r/r NOILVWHOJINT
SAWVYNd 0dS ONISSIO0Hd 4114
SAWYNG JTIdN0D 13s NOILOVSNVHL
\\\1 SHOUHT ‘ INJNI
Nf)
i
(01) SNOILdO ISIT NOILVWYOJNI auvd
(IA) _OJNI 3JOW TOUINOD "T041NOD
4114 (NJ) SIWYN 3114 13s XJIAOR
Indino TICE] \\\\ _ /////,
(NQ) SAWVN HLONAT
SLIND 14 FHRYN
11nva3d 114
. P4

g LA

pvic ALt

L Hepyal oo

s LA

i e S

R Y

s

e

" - piatoun alsce o I,
(1Y) uoljewaojur TOJJUO) 18§ °*£~q dJanByy
f
SETId
N3dO
SLINN
SAWYN
U | //lllflr\\
13
SNOILdO SANYN
ISI1 a11d —
ﬁ SHO¥Yd ANIWYI13d
SLINN SHWYN HIONIT
114 AWVN
lnvdaa 314 S
N -4
04NI ALVYINID
AA0W 0l SATId |
INIWYILIq \
([sdoyud
SLINN)
i
auvo auvo
auyd aITvA KJ4IQOKW TOMLNOD
sHoyyd JLVAITVA XJIAON
SLINN

-

(2v) uorjemuoju] Burssadodd 39S *h-d 4nSyg

SLNILNOD

SAWYNG | 4 MaN —
dMAN ANIWYELIQ

OJNI
ele{e)]]

SIAILOANIA

ALvVadn 3
SAWYNG T11300 AVHHY

SIHVNG d1vVIydodddy
JONANDAS q0v1d

mmxczn\\\\

T'TIdROD

W
110

C z

SIWVNG a0
JAILOIHICA ATTTYA JATLO3MIA J714

syoyyd JLVAITVA 144710

O4NI Nd | NN
JAONW 01

sHoyya

i

TS~ AAI1044Id GIANVIXd 114
114 SAILOFUIG |——— NOILOVSNVHL
NOILOVSNVYL aNvdxd INdNT

HOLVYOS \\\\\\\

d11d
, NDIAH0D (Nn) (01) (Nd)

_ HOLVHOS SIINA SNOI1dO SIWVN
N ISI1 114

(€V) Aaeuqyq wealoag ajepdp °G-q aun8tyg
tt
X40103yId _
MAN 4714 740710)
FITYM SIWVNG TdMAN)
q114
1dMAN /////////r
£
4714 114)
ITIdHOD aa14103dS qiv) SALLOV
ALIYM , quvd m>Hao<zWJ
SLVIS \\\\\\\\\w ‘
HO/aNY J
SONIISIT
01 | N2 SAATIOANIA
IN NN 2 q1vadn
NOILOV
dLVINdONddY a114d
VL | — 14010
\\\\wm:<=o
— 1dMIN
SARYNG
bas 4114
i ¥OIAAWOI
HO1VYOS
¥odd MAN bt (¢ /
¥0dA a0 130 , 114
NOILOVSNVYL
HOLVY¥OS
SAWYNG (IH) (NN)
ATIdHOD 03NI SLINN

(RY) STTJ @204nog 8jeJIBUSYH °g-q 3JnBry

! £
i 714 auooay
) doUN0S ALTHM h
h |
1
SLINN SAWYN
§ 114
w
4
§
i z
| quoomy o~
J0dd QAANVIXE %¥03q) =
! aNvdxa

u

¥ i | X¥OIOZNId
; TdM3N
P REIGERRERET %¥03d

’ 10313s | SAWVNG
,.”M. JdMaAN

SAWVN 04NI
SLINN J114 JAOW

" A S et

*
H
[

113

The MODIFY program consists of a main program and 54
subroutines. This appendix provides a brief description of
each one of the 54 subroutines. The 1list of subroutines is
in alphabetical order by the subroutine name used in the
MODIFY program. Standard FORTRAN 77 requires that
subroutine names be less than or equal to six characters in
length; therefore, a more descriptive title is given at the

beginning of each definition.

BLDCOM BUILD COMPILE is used when a deck is to be
retrieved (no updates) and written to file
COMPILE. Each active card image is written to
the compile and scratch output files.

BLDCON BUILD CONTROL INFORMATION retrieves card image
words and places the contents of the words in
the appropriate variable names/arrays.

BLDNEW BUILD NEWNAM ARRAY merges the contents of
"ADDFIL" and "OLDNAM" arrays.

BLDSOU BUILD SOURCE FILE takes all comdeck records
followed by deck records and writes active card
images to the source file.

CHGNAM CHANGE NAME retrieves the file name or list
options specified as the value of a parameter on
the MODIFY control card and updates the FILES or
LIST array.

CHKYAN CHECK YANK scans each card images's correction-
set-information words and reverses the effects
of the ident name specified on #*YANK
directive(s).

COMPAC COMPACT takes a record and determines the number
of spaces preceding the text, the number of text
characters, and returns the text characters left
Justified.

EXPAND

EXPAND takes the directive abbreviation found
and returns the full directive name.

FIND - FIND is used to locate a given name in a given
array. If found, the array entry is returned.

FINNEW - FINISH NEWPL writes any decks not already
processed to the new program library.

GENCRD - GENERATE CARD IMAGE controls the building of the
NEWREC array (a new program library record) by
placing n-words in the array for each card image
and starting a continuation record if necessary.

GENDIR - GENERATE DIRECTORY builds and writes the new
program library directory using information from
the old directory and the NEWNAM, NEWCON, and
OLDCON arrays.

GENSOU - GENERATE SOURCE FILE controls the building of
the source file by selecting all active card
images in comdecks followed by all active card
images in decks.

GET -~ GET is used to retrieve text characters which
have been stored in a integer record on the
unformatted, direct-access program library.

GETDEC ~ GET DECK selects the next NEWNAM deck/comdeck
entry to process, based on the run mode (full,
quick or normal).

GETLST ~ GET LIST sets the entries in the logical array
LIST according to the values found after the nL"
parameter on the MODIFY Control Card.

GETNAM -~ GET NAME scans a string of characters and
returns the name found.

GETOLD ~ GET OLD DIRECTORY brings in the OLDPL directory
and builds the arrays OLDNAM and OLDCON.

INIT ~ INITIALIZE sets the input/output file units,
sets the file names with the user-supplied
default file names, and writes the header to the
output file.

INSERT -~ INSERT takes text characters and places them in
the specified n~integer words.

INSNEW - INSERT NEW controls the generation of new data
cards to be placed in specified deck/comdeck.

RE - don $r b - . . e A Lk © e i Alan wmbeee e L= ~ - ol pps ———

e SO SR TS i S
NEWENT - NEW ENTRY takes new deck/comdeck/ident names and
, places appropriate information in the NEWREC
array.

NFIND - NUMERIC FIND takes the integer variable
specified and determines if the value is in the
specified array. If found, returns the array

- entry.

NMODE - NORMAL MODE selects the next deck to be
processed with precedence being given to those
decks referenced on ®COMPILE directives followed
by those decks which are to be updated.

OLDENT - OLD ENTRY is used in generating a new PL
directory using the appropriate information in
NEWREC to build the new directory.

OPNFIL - OPEN FILES opens the appropriate files as
specified by the array FILES.

PRIME - PRIME performs a priming read on the input
transaction file and determines if the run is to
be creation or correction.

PRINT - PRINT controls all lines written to the output

file by assigning carriage control, writing the
header on top of each form, and insuring no more
than MAXLIN lines are printed per form.

PRODAT - PROCESS DATA CARD increments the appropriate
counter and writes the data card to either the
scratch input file or the scratch comdeck file.

PRODEL - PROCESS DELETE DIRECTIVE deactivates active card
images and writes the text to the output file.

PRODIR - PROCESS DIRECTIVE validates input directives and
places them in the appropriate array.

PROEDI - PROCESS EDIT DIRECTIVE scans the text for the
given substring, deactivates the card image, and
builds a new card image with the substituted
substring.

PROFIL - PROCESS FILL DIRECTIVE places the substring on
the text where specified, deactivates the old
card image, and builds a new card image with
substituted substring.

s

PROMOD - PROCESS MODIFY CONTROL CARD scans for the MODIFY
parameters and sets the array MODE
appropriately.

116

O i LS wre A . o= W h e mahe W M me ity psnc oo 0 e AR e i S S i e — e S

PRONEW PROCESS NEW locates the new deck/comdeck in the
. scratch input file and controls the writing of
COMPILE, NEWPL, scratch output, and OUTPUT
files.

PRORES PROCESS RESTORE DIRECTIVE reactivates inactive
card images and writes the text to the output

file.

PROSCA PROCESS SCAN DIRECTIVE scans the record for the
substring, builds a new image with substituted
- substring, and writes the new image to the

output file (no updating).

s ¥ QMODE QUICK MODE selects the next deck to be processed
g | with precedence being given to those decks
referenced on *COMPILE directives.

SEQDK

SEQUENCE DECK takes each active card image in
the deck/comdeck and sequentially renumbers the
card images, controls the writing of COMPILE,

| NEWPL, scratch output, and OUTPUT files.

SET COUNTER is part of processing the input
transaction file. If a ®*CALL directive or a
data-input card is realized, a counter is
incremented to indicate another data card in the
deck. Other directives cause the logical array
TYPE to be set to false, indicating a new
counter will be started.

p - SETCNT

SETCON SET CONTROL INFORMATION is used to process the

MODIFY Control Card and opens appropriate files.

SETPRO SET PROCESSING INFORMATION is used to read and
process the input transaction file (directives

and data-input cards).

SETUP « SETUP prepares the selected deck/comdeck for
processing by building arrays DECUPD and YANK,
and setting variables DNAME and DKINFO.

UPDATE UPDATE looks at each card image in the selected .
deck/comdeck, performs any changes requested by ;
update directives, and controls the writing of

the COMPILE, NEWPL, scratch output, and OUTPUT

files.

UPDPL

UPDATE PROGRAM LIBRARY controls the creating/
retrieving/updating of the program library.

G - 5 > s
o an

-

VALAF VALIDATE ADDFILE DIRECTIVE insures proper
\ syntax, validates parameters, and updates ADDAFT
and FILES.

117

v

'

;
6
i
’

i s OV e i VT T VRO PR STV A
ity A NN x - e e it It AR O R Y LR A, - < s gy 1

VALCA VALIDATE CALL DIRECTIVE insures that the comdeck
‘ name exists and increments the appropriate
counter.

VALCDI - VALIDATE COMDECK/DECK/IDENT DIRECTIVES insures
the name does not already exist, sets TYPE

array, and increments a counter if directive is
a *DECK or ¥*COMDECK.

VALCSY - VALIDATE COMPILE/SEQUENCE/YANK DIRECTIVES
insures name(s) exist and places the name(s) in
appropriate arrays (either COMPIL, RESEQ, or
YANK) .

VALREM - VALIDATE REMAINING DIRECTIVES (DELETE, INSERT,
RESTORE, EDIT, SCAN, and FILL) insures the
DNAME.SEQ exists, places the directive in the
UPDDIR array, and writes the directive and any
data cards which follow to the scratch input
file.

WRAFUP - WRAP UP writes the scratch output listing to the
output file, generates list option "B", and
informs the user of directory utilization.

WRICOM - WRITE COMPILE FILE expands any #CALL directives
and writes all records to file COMPILE.

WRICRD - WRITE CARD IMAGE controls the writing of all
card images, checking the status of the card
image and which files are to be generated.

WRINEW - WRITE NEWPL determines the REC number of the
record to be written and writes the NEWREC array
to the NEWPL file.

118

T .

ORI R S~ -y -l o h T e . i ikl

Yita

Nancy Joan (Keller) Murphy was born on 20 July 1948 in
Piqua, Ohio. She graduated from Newton Township Local High
School, Pleasant Hill, Ohio, in 1966. After working four
years in Columbus, Ohio, she enlisted in the USAF and was
eventually assigned to Charleston AFB, South Carolina, as an
Air Operations Specialist. In September 1974, she attended
Wright State University, Dayton, Ohio, under the Airman
Education and Commissioning Program and received her

Bachelor of Science Degree 1in Quantitative Business

Analysis. Upon completion of Officers Training School 1in

March 1977, she was assigned to Headquarters, Air Force
Logistiecs Command, Wright-Patterson AFB, Ohio. In June
1980, she entered the School of Engineering, Air Force

Institute of Technology to pursue her Masters Degree.

Permanent address: 1115 Wayne Street

Troy, Ohio #5373

119

N S S . P .
———— e e

-

.

UNCLASSIFIED vj
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)],
READ INSTRUCTIONS N
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM !
[T REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER :
b AFIT/GCS/MA/81D=5 N.ALS5 558 |
‘ 4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED i
‘ |
MODITY: A MACHINE-INDEPENDENT MS THESIS ﬁ

MAINTENANCE PROGRAM 6. PERFOAMING OG. REPORT NUMBER
7. AUTHOR(3) 3. CONTRACT OR GRANT NUMBER(S) 1
NANCY J. MURPHY ;

Captain USAF
3. PERFORMING ORGANIZATION NAME AND AOORESS 0. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

1. CONTROLLING OFFICE NAME AND ADDRESS 12.D:El’e°mﬂt;’eDAT18981
Avionies Laboratory, Electronic ¢ i
Warfare Division (AFWAL/AAWA) "-l'iugnﬂ OF PAGES

Wright-Patterson AFB, Ohio 45433 :
Ts. MONITORING AGENCY NAM! & ADDRESS(I(ditferent from Controlling Ollice) 18. SECURITY CLASS. (ol this report)

Unclassified

i15a. DECLASSIFICATION,/DOWNGRADING
SCHEDULE

ey e e e T vy e
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

1 5 APR 1982

N S
18. SUPPLEMENTARY NOTE Dean for Research and]

Aoproved for public telw AW AFR 190-17 Professional Development
W%—%Ff—mr Air Force Institute of Technology (ATC) ‘

D1 réffur—uf?m Wright-Patterson AFB, OH 45433

19. KEY WORQS (Continue on reverse gide il necessary and identily by block mumber) !
Software Maintenance Configuration Management Control 3
ADP Utilicy

Library Maintenance
Batch Utilicy
Batch Editor

20. ABSTRACT (Continue on reverse side I necessary end identily by dlock number)

1. MODIFY is a machine-independent batch utility d-nfemed to assist
; programmers in maintaining source files. MODIFY is written in

- K standard FORTRAN 77. MODIFY handles routine update/retrieval

functions and provides a complete audit trail of changes,

DD 5n™s 1473 eoimion oF 1 nov 6313 ossoLETE UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE (When Date Bntered)

}-u

